【題目】已知:點(diǎn)A、點(diǎn)B在直線的兩側(cè).

(點(diǎn)A到直線的距離小于點(diǎn)B到直線的距離).

如圖,

1)作點(diǎn)B關(guān)于直線的對稱點(diǎn)C;

2)以點(diǎn)C為圓心,的長為半徑作,交于點(diǎn)E;

3)過點(diǎn)A的切線,交于點(diǎn)F,交直線于點(diǎn)P;

4)連接、

根據(jù)以上作圖過程及所作圖形,下列四個結(jié)論中:

的切線; 平分;

;

所有正確結(jié)論的序號是___________________________

【答案】①②④

【解析】

①先根據(jù)軸對稱的性質(zhì)可得,再根據(jù)圓的切線的判定即可得證;

②如圖(見解析),連接CF,先根據(jù)切線長定理可得,再根據(jù)直角三角形全等的判定定理與性質(zhì)可得,然后根據(jù)圓心角定理即可得證;

③先根據(jù)軸對稱的性質(zhì)可得垂直平分BC,由此可得,再根據(jù)圓的切線的性質(zhì)可得,然后根據(jù)直角三角形的性質(zhì)可得,由此可得出答案;

④先根據(jù)②可知,從而可得,再根據(jù)③可知是等腰三角形,然后根據(jù)等腰三角形的三線合一可得,由此即可得證.

由軸對稱的性質(zhì)得:,,即

由作圖可知,的半徑

由圓的切線的判定得:的切線,則結(jié)論①正確

如圖,連接CF,設(shè)PC的交點(diǎn)為點(diǎn)D

的切線

,即

由切線長定理得

中,

,即平分,則結(jié)論②正確

由軸對稱的性質(zhì)得:垂直平分BC

中,

,則結(jié)論③錯誤

是等腰三角形

(等腰三角形的三線合一)

,則結(jié)論④正確

綜上,所有正確結(jié)論的序號是①②④

故答案為:①②④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=4,若將△ABC繞點(diǎn)B順時針旋轉(zhuǎn)60°,點(diǎn)A的對應(yīng)點(diǎn)為點(diǎn)A′,點(diǎn)C的對應(yīng)點(diǎn)為點(diǎn)C′,點(diǎn)DA′B的中點(diǎn),連接AD.則點(diǎn)A的運(yùn)動路徑與線段AD、AD圍成的陰影部分面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系 中,已知點(diǎn)和點(diǎn)的坐標(biāo)分別為,將繞點(diǎn)按順時針分別旋轉(zhuǎn),得到,拋物線經(jīng)過點(diǎn),;拋物線經(jīng)過點(diǎn),,

1)求拋物線的解析式.

2)如果點(diǎn)是直線上方拋物線上的一個動點(diǎn).

①若 ,求點(diǎn)的坐標(biāo);

②如圖,過點(diǎn)軸的垂線交直線于點(diǎn),交拋物線于點(diǎn),記,求的函數(shù)關(guān)系式.當(dāng)時,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD是由三個全等矩形拼成的,ACDE、EF、FG、HGHB分別交于點(diǎn)P、Q、K、M、N,設(shè)EPQ、GKM、BNC的面積依次為S1、S2、S3.若S1+S3=30,則S2的值為( ).

A.6B.8

C.10D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】□ABCD中,經(jīng)過AB、C三點(diǎn)的⊙OAD相切于點(diǎn)A,經(jīng)過點(diǎn)C的切線與AD的延長線相交于點(diǎn)P,連接AC

1)求證:ABAC;

2)若AB4,⊙O的半徑為,求PD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.點(diǎn)B的坐標(biāo)為,將直線沿y軸向上平移3個單位長度后,恰好經(jīng)過B、C兩點(diǎn).

1)求k的值和點(diǎn)C的坐標(biāo);

2)求拋物線的表達(dá)式及頂點(diǎn)D的坐標(biāo);

3)已知點(diǎn)E是點(diǎn)D關(guān)于原點(diǎn)的對稱點(diǎn),若拋物線與線段恰有一個公共點(diǎn),結(jié)合函數(shù)的圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,BD平分∠ABC,∠BAD=∠BDC90°,EBC的中點(diǎn),AEBD相交于點(diǎn)F.若BC4,∠CBD30°,則BF的長為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑, BC交⊙O于點(diǎn)D,E的中點(diǎn),連接AEBC于點(diǎn)F,∠ACB =2EAB

1)求證:AC是⊙O的切線;

2)若,,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】疫情期間,某銷售商在網(wǎng)上銷售A、B兩種型號的電腦“手寫板”,其進(jìn)價、售價和每日銷量如下表所示:

進(jìn)價(元/個)

售價(元/個)

銷量(個/日)

A

400

600

200

B

800

1200

400

根據(jù)市場行情,該銷售商對A型手寫板降價銷售,同時對B型手寫板提高售價,此時發(fā)現(xiàn)A型手寫板每降低5元就可多賣1個,B型手寫板每提高5元就少賣1個.銷售時保持每天銷售總量不變,設(shè)其中A型手寫板每天多銷售x個,每天獲得的總利潤為y元.

1)求yx之間的函數(shù)關(guān)系式,并直接寫出x的取值范圍;

2)要使每天的利潤不低于212000元,求出x的取值范圍;

3)該銷售商決定每銷售一個B型手寫板,就捐助a給受“新冠疫情”影響的困難學(xué)生,若當(dāng)30x40時,每天的最大利潤為203400元,求a的值.

查看答案和解析>>

同步練習(xí)冊答案