【題目】銅仁某校高中一年級組建籃球隊,對甲、乙兩名備選同學(xué)進(jìn)行定位投籃測試,每次投10個球,共投10次.甲、乙兩名同學(xué)測試情況如圖所示:

根據(jù)圖6提供的信息填寫下表:

平均數(shù)

眾數(shù)

方差

如果你是高一學(xué)生會文體委員,會選擇哪名同學(xué)進(jìn)入籃球隊?請說明理由.

【答案】1)見解析;(2)見解析.

【解析】

1)根據(jù)平均數(shù)和眾數(shù)的定義求解;

2)根據(jù)折線圖平均數(shù)一樣,而乙的眾數(shù)大,甲的方差小,成績穩(wěn)定;故選甲或乙均有道理,只要說理正確即可.

解:(1)據(jù)折線圖的數(shù)據(jù),甲的數(shù)據(jù)中,6出現(xiàn)的次數(shù)最多,故眾數(shù)是6;

平均數(shù)為:9668766886)=7

乙的數(shù)據(jù)中,8出現(xiàn)的次數(shù)最多,故眾數(shù)是8;

平均數(shù)為:4576878889)=7

平均數(shù)

眾數(shù)

方差

7

6

7

8

2

選甲:平均數(shù)與乙一樣,甲的方差小于乙的方差,甲的成績比乙的成績穩(wěn)定.

選乙:平均數(shù)與甲一樣,乙投中籃的眾數(shù)比甲投中籃的眾數(shù)大,且從折線圖看出,乙比甲潛能更大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

(1)

(2).

(3).

(4).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,試判斷的大小關(guān)系,并證明你的結(jié)論。

猜想:∠AED=C,
理由:∵∠2+ADF=180°( )
1+2=180°( ),
∴∠1=ADF( ),
ADEF( ),
∴∠3=ADE( ),
∵∠3=B( ),
∴∠B=ADE( ),
DEBC( ),
∴∠AED=C( ),

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,半徑均為1個單位長度的半圓O1O2O3,… 組成一條平滑的曲線,點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒個單位長度,則第2019秒時,點P的坐標(biāo)是________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示在平面直角坐標(biāo)系中A,B的坐標(biāo)分別為A(a,0),B(b,0),a,

b滿足 |a+2|+=0,C的坐標(biāo)為(0,3).

(1)a,b的值及S三角形ABC;

(2)若點Mx軸上,S三角形ACMS三角形ABC試求點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD的四個角向內(nèi)翻折后,恰好拼成一個無縫隙無重合的四邊形EFGH,EH=12cm,EF=l6cm則邊AD的長是(

A.12cmB.16cmC.20cmD.24cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點,點Ax軸的正半軸上,點Cy軸的正半軸上,OA=5OC=4

1)在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,求DE兩點的坐標(biāo);

2)如圖2,若AE上有一動點P(不與A,E重合)自A點沿AE方向E點勻速運動,運動的速度為每秒1個單位長度,設(shè)運動的時間為t秒(0t5),過P點作ED的平行線交AD于點M,過點MAE平行線交DE于點N.求四邊形PMNE的面積S與時間t之間的函數(shù)關(guān)系式;當(dāng)t取何值時,s有最大值,最大值是多少?

3)在(2)的條件下,當(dāng)t為何值時,以A,M,E為頂點的三角形為等腰三角形,并求出相應(yīng)的時刻點M的坐標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,點DBC上,點EAB上,且DEAC,AE=5,DE=2,DC=3,動點P從點A出發(fā),沿邊AC以每秒2個單位長的速度向終點C運動,同時動點F從點C出發(fā),在線段CD上以每秒1個單位長的速度向終點D運動,設(shè)運動時間為t秒.

(1)線段AC的長=________;

(2)當(dāng)PCFEDF相似時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與x軸交于Ax10)、Bx2,0)兩點,且x1x2y軸交于點C0,4),其中x1,x2是方程x2﹣4x﹣12=0的兩個根.

1)求拋物線的解析式;

2)點M是線段AB上的一個動點,過點MMN∥BC,交AC于點N,連結(jié)CM,當(dāng)△CMN的面積最大時,求點M的坐標(biāo);

3)點D4,k)在(1)中拋物線上,點E為拋物線上一動點,在x軸上是否存在點F,使以AD、EF為頂點的四邊形是平行四邊形?如果存在,直接寫出所有滿足條件的點F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案