【題目】如圖,點D,E分別在AC,AB上,BDCE相交于點O,已知∠B=∠C,現(xiàn)添加下面的哪一個條件后,仍不能判定ABD≌△ACE的是( 。

A.ADAEB.ABACC.BDCED.ADB=∠AEC

【答案】D

【解析】

用三角形全等的判定知識,便可求解.

解:已知∠B=∠C,∠BAD=∠CAE

若添加ADAE,可利用AAS定理證明△ABE≌△ACD,故A選項不合題意;

若添加ABAC,可利用ASA定理證明△ABE≌△ACD,故B選項不合題意;

若添加BDCE,可利用AAS定理證明△ABE≌△ACD,故C選項不合題意;

若添加∠ADB=∠AEC,沒有邊的條件,則不能證明△ABE≌△ACD,故D選項合題意.

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形,邊.將此長方形沿折疊,使點與點重合,點落在點處.

1)試判斷的形狀,并說明理由;

2)求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知AB的直徑,直線L相切于點C,CDABE,直線L,垂足為F,BFC

圖中哪條線段與AE相等?試證明你的結(jié)論;

,,求AB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,BC=5,⊙O與RtABC的三邊AB、BC、AC分別相切于點D、E、F,若O的半徑r=2,則RtABC的周長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在下列帶有坐標系的網(wǎng)格中,ABC的頂點都在邊長為1的小正方形的頂點上

(1) 直接寫出坐標:A__________,B__________

(2) 畫出ABC關于y軸的對稱的DEC(點D與點A對應)

(3) 用無刻度的直尺,運用全等的知識作出ABC的高線BF(保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下列兩段材料,再解答下列問題:

(一)例題:分解因式:

解:將看成整體,設,則原式,

再將換原,得原式;

上述解題目用到的是:整體思想,整體思想是數(shù)學解題中常用的一種思想方法;

(二)常用因式分解的方法有提公因式法和公式法,但有的多項式只用上述一種方法無法分解,例如,我們細心觀察就會發(fā)現(xiàn),前面兩項可以分解,后兩項也可以分解,分別分解后會產(chǎn)生公因式就可以完整分解了

過程:

,

這種方法叫分組分解法,對于超過三項的多項式往往考慮這種方法

利用上述數(shù)學思想方法解決下列問題:

1)分解因式:

2)分解因式:

3)分解因式:;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(滿分8分)我們把依次連接任意四邊形各邊中點得到的四邊形叫做中點四邊形.

如圖,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點,依次連接各邊中點得到中點四邊形EFGH.

(1)這個中點四邊形EFGH的形狀是____________;

(2)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知x1,x2是方程x2﹣(2k﹣1)x+(k2+3k+5)=0的兩個實數(shù)根,且x12+x22=39,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在ABC中,AB=AC=5,cosB=,P是邊AB上一點,以P為圓心,PB為半徑的P與邊BC的另一個交點為D,聯(lián)結(jié)PD、AD

(1)求△ABC的面積;

(2)設PB=x,△APD的面積為y,求y關于x的函數(shù)關系式,并寫出定義域;

(3)如果△APD是直角三角形,求PB的長.

查看答案和解析>>

同步練習冊答案