如圖,已知拋物線的頂點(diǎn)坐標(biāo)是(2,-1),且經(jīng)過點(diǎn)A(5,8)
(1)求該拋物線的解析式;
(2)設(shè)該拋物線與y軸相交于點(diǎn)B,與x軸相交于C、D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左邊),試求點(diǎn)B、C、D的坐標(biāo);
(3)設(shè)點(diǎn)P是x軸任一點(diǎn),連接AP、BP.試求當(dāng)AP+BP取得最小值時(shí)點(diǎn)P的坐標(biāo).
分析:(1)利用頂點(diǎn)式將頂點(diǎn)坐標(biāo)(2,-1)代入,進(jìn)而求出a的值即可;
(2)利用圖象與坐標(biāo)軸交點(diǎn)求法,分別求出即可;
(3)首先利用B點(diǎn)對(duì)稱點(diǎn)B′(0,-3),連接AB′交x軸于點(diǎn)P,利用軸對(duì)稱得出AP+BP的最小值為線段AB′進(jìn)而利用待定系數(shù)法求出解析式,即可得出P點(diǎn)坐標(biāo).
解答:(1)設(shè)拋物線的解析式為y=a(x-2)2-1,
∵拋物線經(jīng)過A(5,8),∴8=a(5-2)2-1,
解得:a=1
∴y=(x-2)2-1(或y=x2-4x+3);

(2)令x=0得y=3,
故B (0,3 )
令y=0得x2-4x+3=0,解得x1=1,x2=3,
進(jìn)而得出(1,0 ),D (3,0 );

(3)取點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)B′(0,-3),連接AB′交x軸于點(diǎn)P.
則PB=PB′,∴AP+BP=AP+PB′=AB′,
而PB′為直線段,∴AP+BP的最小值為線段AB′.
設(shè)直線AB′的解析式為y=kx+b過點(diǎn)A(5,8)和B′(0,-3),
8=5k+b
-3=b

解得:
k=
11
5
b=-3
,得AB′的解析式為:y=
11
5
x-3
,
當(dāng)y=0時(shí),x=
15
11
,
∴點(diǎn)P的坐標(biāo)為(
15
11
,0).
點(diǎn)評(píng):此題主要考查了頂點(diǎn)式求二次函數(shù)解析式以及待定系數(shù)法求一次函數(shù)解析式以及軸對(duì)稱的性質(zhì)等知識(shí),根據(jù)已知得出P點(diǎn)位置是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖是拋物線拱橋,已知水位在AB位置時(shí),水面寬4
6
m
,水位上升3m,達(dá)到警戒線CD,這時(shí)水面寬4
3
m
.若洪水到來時(shí),水位以每小時(shí)0.25m的速度上升,求水過警戒線后幾小時(shí)淹到拱橋頂?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在斜坡A處立一旗桿AB(旗桿與水平面垂直),一小球從斜坡O點(diǎn)拋出(如圖),小球擦旗桿頂B而過,落地時(shí)撞擊斜坡的落點(diǎn)為C,已知A點(diǎn)與O點(diǎn)的距離為
5
2
米,旗桿AB高為3米,C點(diǎn)的垂精英家教網(wǎng)直高度為3.5米,C點(diǎn)與O點(diǎn)的水平距離為7米,以O(shè)為坐標(biāo)原點(diǎn),水平方向與豎直方向分別為x軸、y軸,建立直角坐標(biāo)系.
(1)求小球經(jīng)過的拋物線的解析式(小球的直徑忽略不計(jì));
(2)H為小球所能達(dá)到的最高點(diǎn),求OH與水平線Ox之間夾角的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在斜坡A處立一旗桿AB(旗桿與水平面垂直),一小球從斜坡O點(diǎn)拋出(如圖),小球擦旗桿頂B而過,落地時(shí)撞擊斜坡的落點(diǎn)為C,已知A點(diǎn)與O點(diǎn)的距離為數(shù)學(xué)公式米,旗桿AB高為3米,C點(diǎn)的垂直高度為3.5米,C點(diǎn)與O點(diǎn)的水平距離為7米,以O(shè)為坐標(biāo)原點(diǎn),水平方向與豎直方向分別為x軸、y軸,建立直角坐標(biāo)系.
(1)求小球經(jīng)過的拋物線的解析式(小球的直徑忽略不計(jì));
(2)H為小球所能達(dá)到的最高點(diǎn),求OH與水平線Ox之間夾角的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(02)(解析版) 題型:解答題

(2001•青海)在斜坡A處立一旗桿AB(旗桿與水平面垂直),一小球從斜坡O點(diǎn)拋出(如圖),小球擦旗桿頂B而過,落地時(shí)撞擊斜坡的落點(diǎn)為C,已知A點(diǎn)與O點(diǎn)的距離為米,旗桿AB高為3米,C點(diǎn)的垂直高度為3.5米,C點(diǎn)與O點(diǎn)的水平距離為7米,以O(shè)為坐標(biāo)原點(diǎn),水平方向與豎直方向分別為x軸、y軸,建立直角坐標(biāo)系.
(1)求小球經(jīng)過的拋物線的解析式(小球的直徑忽略不計(jì));
(2)H為小球所能達(dá)到的最高點(diǎn),求OH與水平線Ox之間夾角的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年青海省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2001•青海)在斜坡A處立一旗桿AB(旗桿與水平面垂直),一小球從斜坡O點(diǎn)拋出(如圖),小球擦旗桿頂B而過,落地時(shí)撞擊斜坡的落點(diǎn)為C,已知A點(diǎn)與O點(diǎn)的距離為米,旗桿AB高為3米,C點(diǎn)的垂直高度為3.5米,C點(diǎn)與O點(diǎn)的水平距離為7米,以O(shè)為坐標(biāo)原點(diǎn),水平方向與豎直方向分別為x軸、y軸,建立直角坐標(biāo)系.
(1)求小球經(jīng)過的拋物線的解析式(小球的直徑忽略不計(jì));
(2)H為小球所能達(dá)到的最高點(diǎn),求OH與水平線Ox之間夾角的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案