【題目】拋物線y=-3(x+2)2的頂點(diǎn)坐標(biāo)是_____________,若將它旋轉(zhuǎn)180后得新的拋物線,其解析式為________.
【答案】 (-2,0), y=3(x+2)
【解析】
利用頂點(diǎn)式即可確定拋物線的頂點(diǎn)坐標(biāo),由旋轉(zhuǎn)180后形狀不變,頂點(diǎn)坐標(biāo)不變,開口方向改變,將頂點(diǎn)式中的二次項(xiàng)系數(shù)變?yōu)橄喾磾?shù)即可得出旋轉(zhuǎn)后的拋物線解析式.
拋物線y=-3(x+2)2的頂點(diǎn)坐標(biāo)為(-2,0),
∵將它繞拋物線的頂點(diǎn)旋轉(zhuǎn)180°,
∴新拋物線的頂點(diǎn)坐標(biāo)不變,形狀不變,開口方向改變,
∵旋轉(zhuǎn)前二次項(xiàng)系數(shù)為-3,
∴旋轉(zhuǎn)180°后二次項(xiàng)系數(shù)為3,
∴新拋物線的解析式為y=3(x+2) 2.
故答案為:(-2,0);y=3(x+2) 2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一;ǚ鄣馁|(zhì)量約為0.000037毫克,那么0.000037可用科學(xué)記數(shù)法表示為( )
A.3.7×10﹣5
B.3.7×10﹣6
C.37×10﹣7
D.3.7×10﹣8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=﹣x2+bx+c(b,c為常數(shù))的圖象經(jīng)過點(diǎn)A(3,1),點(diǎn)C(0,4),頂點(diǎn)為點(diǎn)M,過點(diǎn)A作AB∥x軸,交y軸于點(diǎn)D,交該二次函數(shù)圖象于點(diǎn)B,連結(jié)BC.
(1)求該二次函數(shù)的解析式及點(diǎn)M的坐標(biāo);
(2)若將該二次函數(shù)圖象向下平移m(m>0)個(gè)單位,使平移后得到的二次函數(shù)圖象的頂點(diǎn)落在△ABC的內(nèi)部(不包括△ABC的邊界),求m的取值范圍;
(3)點(diǎn)P是直線AC上的動(dòng)點(diǎn),若點(diǎn)P,點(diǎn)C,點(diǎn)M所構(gòu)成的三角形與△BCD相似,請(qǐng)直接寫出所有點(diǎn)P的坐標(biāo)(直接寫出結(jié)果,不必寫解答過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列圖形:平行四邊形、矩形、菱形、等腰梯形、正方形中是軸對(duì)稱圖形的有( 。﹤(gè).
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,函數(shù)y=﹣x與函數(shù)的圖象相交于A,B兩點(diǎn),過A,B兩點(diǎn)分別作y軸的垂線,垂足分別為點(diǎn)C,D.則四邊形ACBD的面積為( )
A.2 B.4 C.6 D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c與x軸有兩個(gè)交點(diǎn),那么一元二次方程ax2+bx+c=0 的根的情況是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,在以O(shè)為原點(diǎn)的直角坐標(biāo)系中,點(diǎn)A、C分別在x軸、y軸的正半軸上,點(diǎn)B(a,b)在第一象限,四邊形OABC是矩形,若反比例函數(shù)(k>0,x>0)的圖象與AB相交于點(diǎn)D,與BC相交于點(diǎn)E,且BE=CE.
(1)求證:BD=AD;
(2)若四邊形ODBE的面積是9,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算﹣(﹣3a2b3)4的結(jié)果是( )
A.81a8b12
B.12a6b7
C.﹣12a6b7
D.﹣81a8b12
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com