【題目】如圖,連接在一起的兩個等邊三角形的邊長都為1cm,一個微型機器人由點A開始按A→B→C→D→E→C→A→B→C…的順序沿等邊三角形的邊循環(huán)移動.當(dāng)微型機器人移動了2019cm后,它停在了點_____上.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)加工一臺大型機械設(shè)備潤滑用油千克,用油的重復(fù)利用率為,按此計算,加工一臺大型機械設(shè)備的實際耗油量為千克.通過技術(shù)革新后,不僅降低了潤滑用油量,同時也提高了用油的重復(fù)利用率,并且發(fā)現(xiàn)潤滑用油量每減少千克,用油量的重復(fù)利用率增加,這樣加工一臺大型機械設(shè)備的實際耗油量下降到千克,問技術(shù)革新后,加工一臺大型機械設(shè)備潤滑用油量是多少千克?用油的重復(fù)利用率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在甲村至乙村間有一條公路,在C處需要爆破,已知點C與公路上的停靠站A的距離為300米,與公路上的另一停靠站B的距離為400米,且CA⊥CB,如圖所示.為了安全起見,爆破點C周圍半徑250米范圍內(nèi)不得進入,問在進行爆破時,公路AB段是否有危險?請用你學(xué)過的知識加以解答.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定:四條邊對應(yīng)相等,四個角對應(yīng)相等的兩個四邊形全等.某學(xué)習(xí)小組在研究后發(fā)現(xiàn)判定兩個四邊形全等需要五組對應(yīng)條件,于是把五組條件進行分類研究,并且針對二條邊和三個角對應(yīng)相等類型進行研究提出以下幾種可能:
①AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1;
②AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1;
③AB=A1B1,AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1;
④AB=A1B1,CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1.
其中能判定四邊形ABCD和四邊形A1B1C1D1全等的有_____個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點A(―3,6)、B(―9,一3),以原點O為位似中心,相似比為,把△ABO縮小,則點A的對應(yīng)點A′的坐標(biāo)是( )
A.(―1,2)
B.(―9,18)
C.(―9,18)或(9,―18)
D.(―1,2)或(1,―2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分線交AC于D,則圖中共有等腰三角形( )
A.0個B.1個C.2個D.3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:如圖,在四邊形的邊上任取一點(點不與、重合),分別連接、,可以把四邊形分成三個三角形,如果其中有兩個三角形相似,我們就把叫做四邊形的邊上的“相似點”:如果這三個三角形都相似,我們就把叫做四邊形的邊上的“強相似點”.解決問題:
如圖,,試判斷點是否是四邊形的邊上的相似點,并說明理由;
如圖,在矩形中,、、、四點均在正方形網(wǎng)格(網(wǎng)格中每個小正方形的邊長為)的格點(即每個小正方形的頂點)上,試在圖②中畫出矩形的邊上的強相似點;
如圖,將矩形沿折疊,使點落在邊上的點處,若點恰好是四邊形的邊上的一個強相似點,試探究與的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖△ABC內(nèi)接于⊙O,∠B=60°,CD是⊙O的直徑,點P是CD延長線上一點,且AP=AC.
(1)求證:PA是⊙O的切線;
(2)若PD=,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)是關(guān)于的二次函數(shù),求:
滿足條件的值;
為何值時,拋物線有最低點?求出這個最低點.這時,當(dāng)為何值時,隨的增大而增大?
為何值時,函數(shù)有最大值?最大值是多少?這時,當(dāng)為何值時,隨的增大而減小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com