【題目】如圖,在邊長為1的正方形網(wǎng)格中,.線段與線段存在一種變換關(guān)系,即其中一條線段繞著某點(diǎn)旋轉(zhuǎn)一個(gè)角度可以得到另一條線段,則這個(gè)旋轉(zhuǎn)中心的坐標(biāo)為__________.
【答案】或
【解析】
根據(jù)旋轉(zhuǎn)后的對應(yīng)關(guān)系分類討論,分別畫出對應(yīng)的圖形,作出對應(yīng)點(diǎn)連線的垂直平分線即可找到旋轉(zhuǎn)中心,最后根據(jù)點(diǎn)A的坐標(biāo)即可求結(jié)論.
解:①若旋轉(zhuǎn)后點(diǎn)A的對應(yīng)點(diǎn)是點(diǎn)C,點(diǎn)B的對稱點(diǎn)是點(diǎn)D,連接AC和BD,分別作AC和BD的垂直平分線,兩個(gè)垂直平分線交于點(diǎn)O,根據(jù)垂直平分線的性質(zhì)可得OA=OC,OB=OD,故點(diǎn)O即為所求,
∵,
∴由圖可知:點(diǎn)O的坐標(biāo)為(5,2);
②若旋轉(zhuǎn)后點(diǎn)A的對應(yīng)點(diǎn)是點(diǎn)D,點(diǎn)B的對稱點(diǎn)是點(diǎn)C,連接AD和BC,分別作AD和BC的垂直平分線,兩個(gè)垂直平分線交于點(diǎn)O,根據(jù)垂直平分線的性質(zhì)可得OA=OD,OB=OC,故點(diǎn)O即為所求,
∵,
∴由圖可知:點(diǎn)O的坐標(biāo)為
綜上:這個(gè)旋轉(zhuǎn)中心的坐標(biāo)為或
故答案為:或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為研究學(xué)生的課余愛好情況,采取抽樣調(diào)查的方法,從閱讀、運(yùn)動、娛樂、上網(wǎng)等四個(gè)方面調(diào)查了若干學(xué)生的興趣愛好;并將調(diào)查的結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)圖中提供的信息解答下列問題:
(1)在這次研究中,一共調(diào)查了 名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算閱讀部分圓心角是 度.
(3)若該校九年級愛好閱讀的學(xué)生有150人,估計(jì)九年級有 名學(xué)生?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+k與雙曲線y=(x>0)交于點(diǎn)A(1,a).
(1)求a,k的值;
(2)已知直線l過點(diǎn)D(2,0)且平行于直線y=kx+k,點(diǎn)P(m,n)(m>3)是直線l上一動點(diǎn),過點(diǎn)P分別作x軸、y軸的平行線,交雙曲線y=(x>0)于點(diǎn)M、N,雙曲線在點(diǎn)M、N之間的部分與線段PM、PN所圍成的區(qū)域(不含邊界)記為W.橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).
①當(dāng)m3 時(shí),直接寫出區(qū)域W 內(nèi)的整點(diǎn)個(gè)數(shù);
②若區(qū)域W 內(nèi)有整點(diǎn),且個(gè)數(shù)不超過 5 個(gè),結(jié)合圖象,求 m 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程mx2+(3m+1)x+3=0.
(1)求證:該方程有兩個(gè)實(shí)數(shù)根;
(2)如果拋物線y=mx2+(3m+1)x+3與x軸交于A、B兩個(gè)整數(shù)點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),且m為正整數(shù),求此拋物線的表達(dá)式;
(3)在(2)的條件下,拋物線y=mx2+(3m+1)x+3與y軸交于點(diǎn)C,點(diǎn)B關(guān)于y軸的對稱點(diǎn)為D,設(shè)此拋物線在﹣3≤x≤﹣之間的部分為圖象G,如果圖象G向右平移n(n>0)個(gè)單位長度后與直線CD有公共點(diǎn),求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某養(yǎng)殖場在養(yǎng)殖面積擴(kuò)建中,準(zhǔn)備將總長為米的籬笆圍成 矩形形狀的雞舍,其中一邊利用現(xiàn)有的一段足夠長的圍墻,其余三邊 用籬笆,且在與墻平行的一邊上開一個(gè)米寬的門.設(shè)邊長為米, 雞舍面積為平方米.
求出與的函數(shù)關(guān)系式;(不需寫自變量的取值范圍).
當(dāng)雞舍的面積為平方米時(shí),求出雞舍的一邊的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,函數(shù)圖象上點(diǎn)的橫坐標(biāo)與其縱坐標(biāo)的和稱為點(diǎn)的“坐標(biāo)和”,而圖象上所有點(diǎn)的“坐標(biāo)和”中的最小值稱為圖象的“智慧數(shù)”.如圖:拋物線上有一點(diǎn),則點(diǎn)的“坐標(biāo)和”為6,當(dāng)時(shí),該拋物線的“智慧數(shù)”為0.
(1)點(diǎn)在函數(shù)的圖象上,點(diǎn)的“坐標(biāo)和”是 ;
(2)求直線的“智慧數(shù)”;
(3)若拋物線的頂點(diǎn)橫、縱坐標(biāo)的和是2,求該拋物線的“智慧數(shù)”;
(4)設(shè)拋物線頂點(diǎn)的橫坐標(biāo)為,且該拋物線的頂點(diǎn)在一次函數(shù)的圖象上;當(dāng)時(shí),拋物線的“智慧數(shù)”是2,求該拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,連接對角線BD,AB=BD,E為線段AD上一點(diǎn),AE=BE,F為射線BE上一點(diǎn),DE=BF,連接AF.
(1)如圖1,若∠BED=60°,CD=2,求EF的長;
(2)如圖2,連接DF并延長交AB于點(diǎn)G,若AF=2DE,求證:DF=2GF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,的平分線交于點(diǎn),以為圓心,長為半徑作.
(1)求證:是的切線.
(2)設(shè)與切于點(diǎn),,連接,,.
①當(dāng)__________時(shí),四邊形為菱形;
②當(dāng)__________時(shí),為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知射線,點(diǎn)從B點(diǎn)出發(fā),以每秒1個(gè)單位長度沿射線向右運(yùn)動;同時(shí)射線繞點(diǎn)順時(shí)針旋轉(zhuǎn)一周,當(dāng)射線停止運(yùn)動時(shí),點(diǎn)隨之停止運(yùn)動.以為圓心,1個(gè)單位長度為半徑畫圓,若運(yùn)動兩秒后,射線與恰好有且只有一個(gè)公共點(diǎn),則射線旋轉(zhuǎn)的速度為每秒______度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com