【題目】ABCD中,點(diǎn)E,F(xiàn)分別在邊BC,AD上,且AF=CE.

(Ⅰ)如圖①,求證四邊形AECF是平行四邊形;

(Ⅱ)如圖②,若∠BAC=90°,且四邊形AECF是邊長(zhǎng)為6的菱形,求BE的長(zhǎng).

【答案】(1)證明見(jiàn)解析;(2)6.

【解析】

(I)根據(jù)平行四邊形的性質(zhì)得出ADBC,根據(jù)平行四邊形的判定推出即可;

(II)根據(jù)菱形的性質(zhì)求出AE=6,AE=EC,求出AE=BE即可.

(I)證明:∵四邊形ABCD是平行四邊形,

ADBC,

AF=CE,

∴四邊形AECF是平行四邊形;

(II)如圖:

∵四邊形AECF是菱形,

AE=EC,

∴∠1=2,

∵∠BAC=90°,

∴∠2+3=90°1+B=90°,

∴∠3=B,

AE=BE,

AE=6,

BE=6.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD中,點(diǎn)E,F(xiàn)分別在邊BC,AD上,且AF=CE.

(Ⅰ)如圖①,求證四邊形AECF是平行四邊形;

(Ⅱ)如圖②,若∠BAC=90°,且四邊形AECF是邊長(zhǎng)為6的菱形,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形ABCD中,E、F分別是邊BC、CD的中點(diǎn),連接AE,AF.

(1)如圖1,若四邊形ABCD的面積為5,則四邊形AECF的面積為____________;

(2)如圖2,延長(zhǎng)AE至G,使EG=AE,延長(zhǎng)AFH,使FH=AF,連接BG、GH、HD、DB.

求證:四邊形BGHD是平行四邊形;

(3)如圖3,對(duì)角線 AC、BD相交于點(diǎn)M, AEBD交于點(diǎn)P, AFBD交于點(diǎn)N. 直接寫(xiě)出BP、PM、MN、ND的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了加強(qiáng)訓(xùn)練學(xué)生的籃球和足球運(yùn)球技能,準(zhǔn)備購(gòu)買(mǎi)一批籃球和足球用于訓(xùn)練,已知1個(gè)籃球和2個(gè)足球共需116元;2個(gè)籃球和3個(gè)足球共需204

求購(gòu)買(mǎi)1個(gè)籃球和1個(gè)足球各需多少元?

若學(xué)校準(zhǔn)備購(gòu)進(jìn)籃球和足球共40個(gè),并且總費(fèi)用不超過(guò)1800元,則籃球最多可購(gòu)買(mǎi)多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠CAB=50°.按以下步驟作圖:①以點(diǎn)A為圓心,小于AC的長(zhǎng)為半徑畫(huà)弧,分別交AB、AC于點(diǎn)E、F;②分別以點(diǎn)E、F為圓心,大于 EF的長(zhǎng)為半徑畫(huà)弧,兩弧相交于點(diǎn)G;③作射線AG交BC邊于點(diǎn)D.則∠ADC的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3.點(diǎn)D是BC邊上的一動(dòng)點(diǎn)(不與點(diǎn)B、C重合),過(guò)點(diǎn)D作DE⊥BC交AB于點(diǎn)E,將∠B沿直線DE翻折,點(diǎn)B落在射線BC上的點(diǎn)F處.當(dāng)△AEF為直角三角形時(shí),BD的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,鈍角△ABC.

(1)過(guò)AAEBC,過(guò)BBFAC,垂足分別為E,F(xiàn),AE,BF相交于H;

(2)過(guò)AAM∥BC,過(guò)BBM∥AC,相交于M;

(3)若∠AMB=115°,求∠AHB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,射線OA表示的方向是北偏東15°,射線OB表示的方向是北偏西40°.

(1)若∠AOC=∠AOB,則射線OC表示的方向是 ;

(2)若射線OD是射線OB的反向延長(zhǎng)線,則射線OD表示的方向是 ;

(3)∠BOD可以看作是由OB繞點(diǎn)O逆時(shí)針?lè)较蛐D(zhuǎn)至OD形成的角,作∠BOD的平分線OE;

(4)在(1),(2),(3)的條件下,求∠COE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在坐標(biāo)系中放置一菱形OABC,已知∠ABC=60°,點(diǎn)B在y軸上,OA=1,先將菱形OABC沿x軸的正方向無(wú)滑動(dòng)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2017次,點(diǎn)B的落點(diǎn)依次為B1 , B2 , B3 , …,則B2017的坐標(biāo)為(
A.(1345,0)
B.(1345.5,
C.(1345,
D.(1345.5,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案