如圖,OA和OB是⊙O的半徑,OB=2,OA⊥OB,P是OA上任一點(diǎn),BP的延長線交⊙O于點(diǎn)Q,過點(diǎn)Q的⊙O的切線交OA延長線于點(diǎn)R.
(Ⅰ)求證:RP=RQ;
(Ⅱ)若OP=PQ,求PQ的長.
(1)連接OQ,
∵QR是切線,
∴∠OQR=90°,
∴∠BQO+∠PQR=90°,
∵OA⊥OB,∴∠BOA=90°,
∴∠B+∠BPO=90°,又∠BPO=∠RPQ,
∴∠B+∠RPQ=90°,
由OB=OQ得:∠B=∠BQO,
∴∠RPQ=∠RQP,
∴PR=QR;

(2)∵OP=PQ,∴∠POQ=∠PQO,
又OB=OQ,∴∠B=∠PQO,
設(shè)∠B=∠PQO=∠POQ=x,又∠BOP=90°,
根據(jù)三角形內(nèi)角和定理得:
∠B+∠BOP+∠POQ+∠PQO=180°,即x+90°+x+x=180°,
解得:x=30°,即∠B=30°(2分)
∴∠RPQ=∠BPO=60°,又PR=QR,
∴△PQR為等邊三角形,即PQ=QR=PR,
在直角三角形OQR中,OQ=OB=2,
根據(jù)銳角三角函數(shù)定義得:
PQ=QR=OQ•tan30°=
2
3
3
.(2分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,以AB為直徑作半圓與直角梯形ABED另一腰DE相切于C點(diǎn),再分別以AC、BC、
AD、CD、CE、BE為直徑作半圓.若AC=3,BC=4,則圖中陰影部分的面積和為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,PA、PB切⊙O于A、B,PO及其延長線分別交⊙O于C、D,AE為⊙O的直徑,連接AB、AC,下列結(jié)論:①
CB
=
DE
;②∠ABP=∠DOE;③AC平分∠PAB;④∠CAB=∠BAE;其中正確的有(  )
A.①②③B.①②③④C.①②④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,弦AC與AB成30°角,CD與⊙O切于C,交AB的延長線于D,
求證:BD=OB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖∠BAC=60°,半徑長1的⊙O與∠BAC的兩邊相切,P為⊙O上一動點(diǎn),以P為圓心,PA長為半徑的⊙P交射線AB、AC于D、E兩點(diǎn),連接DE,則線段DE長度的最大值為( 。
A.3B.6C.
3
3
2
D.3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD,AD=8,DC=6,在對角線AC上取一點(diǎn)O,以O(shè)C為半徑的圓切AD于E,交BC于F,交CD于G.
(1)求⊙O的半徑R;
(2)設(shè)∠BFE=α,∠CED=β,請寫出α,β,90°三者之間的關(guān)系式(只需寫出一個)并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)D在⊙O的直徑AB的延長線上,點(diǎn)C在⊙O上,AC=CD,∠D=30°,
(1)請判斷CD是否⊙O的切線?并說明理由;
(2)若⊙O的半徑為6,求弧AC的長.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

菱形的對角線交點(diǎn)為O,以O(shè)為圓心,O到菱形一邊的距離為半徑的圓與另三邊的位置關(guān)系是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,PA為圓的切線,A為切點(diǎn),PBC為割線,∠APC的平分線交AB于點(diǎn)D,交AC于點(diǎn)E.
求證:(1)AD=AE;(2)AB•AE=AC•DB.

查看答案和解析>>

同步練習(xí)冊答案