已知:在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是BC的中點,連接AE、AC。

(1)點F是DC上一點,連接EF,交AC于點O(如圖1),求證:△AOE∽△COF;

(2)若點F是DC的中點,連接BD,交AE與點G(如圖2),求證:四邊形EFDG是菱形。

(1)證明:∵點E是BC的中點,BC=2AD

∴EC=BE=BC=AD        又∵AD∥DC

∴四邊形AECD為平行四邊形

∴AE∥DC   ∴∠AEO=∠CFO,∠EAO=∠FCO

∴△AOE∽△COF、

(2)證明:連接DE

∵DE平行且等于BE            ∴四邊形ABED是平行四邊形

又∠ABE=90°    ∴□ABED是矩形

∴GE=GA=GB=GD=BD=AE

∴E、F分別是BC、CD的中點       ∴EF、GE是△CBD的兩條中線

∴EF=BD=GD,GE=CD=DF

又GE=GD  ∴EF=GD=GE=DF

∴四邊形EFDG是菱形

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:在梯形ABCD中,AD∥BC,點E在AB上,點F在DC上,且AD=a,BC=b.
(1)如果點E、F分別為AB、DC的中點,如圖.求證:EF∥BC,且EF=
a+b
2
;
(2)如果
AE
EB
=
DF
EC
=
m
n
,如圖,判斷EF和BC是否平等,并用a、b、m、n的代數(shù)式表示EF.請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在梯形ABCD中,AD∥BC,AB=DC,E,F(xiàn)分別是AB和BC邊上的點.
(1)如圖①,以EF為對稱軸翻折梯形ABCD,使點B與點D重合,且DF⊥BC.若AD=4,BC=8,求梯形ABCD的面積S梯形ABCD的值;
(2)如圖②,連接EF并延長與DC的延長線交于點G,如果FG=k•EF(k為正數(shù)),試猜想BE與CG有何數(shù)量關(guān)系寫出你的結(jié)論并證明之.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:在梯形ABCD中,AD∥BC,AD=3,BC=5,點E在AB上,且AE:EB=2:3,過點E作EF∥BC交CD于F,求EF的長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在梯形ABCD中,AD∥BC,AB=DC=5,AD=3.5,sinB=
45
,點E是AB邊上一點,BE=3,點P是BC邊上的一動點,連接EP,作∠EPF,使得∠EPF=∠B,射線PF與AD邊交于點F,與CD的延長線交于點G,設(shè)BP=x,DF=y.
(1)求BC的長;
(2)試求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
(3)連接EF,如果△PEF是等腰三角形,試求BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,點E、F分別是BC和DC的中點,連接AE、EF和BD,AE和BD相交于點G.
(1)求證:四邊形AECD是平行四邊形;
(2)求證:四邊形EFDG是菱形.

查看答案和解析>>

同步練習(xí)冊答案