【題目】在同一直角坐標(biāo)系中,函數(shù)和函數(shù)(m是常數(shù),且)的圖象可能是( )

A. B.

C. D.

【答案】D

【解析】

先根據(jù)一次函數(shù)圖像確定m的符號,在依據(jù)二次函數(shù)y=ax2+bx+c圖像性質(zhì)進(jìn)行判斷,當(dāng)a0時,開口向上;當(dāng)a0時,開口向下.對稱軸為x=,與y軸的交點坐標(biāo)為(0,c).

解:A、由函數(shù)ymx+m的圖象可知m0,即函數(shù)y=﹣mx2+2x+2開口方向朝上,與圖象不符,故A選項錯誤;

B、由函數(shù)ymx+m的圖象可知m0,對稱軸為x0,則對稱軸應(yīng)在y軸左側(cè),與圖象不符,故B選項錯誤;

C、由函數(shù)ymx+m的圖象可知m0,即函數(shù)y=﹣mx2+2x+2開口方向朝下,與圖象不符,故C選項錯誤;

D、由函數(shù)ymx+m的圖象可知m0,即函數(shù)y=﹣mx2+2x+2開口方向朝上,對稱軸為x=﹣ 0,則對稱軸應(yīng)在y軸左側(cè),與圖象相符,故D選項正確;

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=kx(k≠0)經(jīng)過點(12,﹣5),將直線向上平移m(m>0)個單位,若平移后得到的直線與半徑為6的⊙O相交(點O為坐標(biāo)原點),則m的取值范圍為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料: 小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進(jìn)行了以下探索:

設(shè)(其中均為整數(shù)),則有

.這樣小明就找到了一種把部分的式子化為平方式的方法.

請你仿照小明的方法探索并解決下列問題:

當(dāng)均為正整數(shù)時,若,用含mn的式子分別表示,得      ;

2)利用所探索的結(jié)論,找一組正整數(shù),填空:    (      )2

3)若,且均為正整數(shù),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加快城鄉(xiāng)對接,建設(shè)美麗鄉(xiāng)村,某地區(qū)對A、B兩地間的公路進(jìn)行改建.如圖,A、B兩地之間有一座山.汽車原來從A地到B地需途徑C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車可直接沿直線AB行駛.已知BC100千米,∠A45°,∠B30°

1)開通隧道前,汽車從A地到B地要走多少千米?

2)開通隧道后,汽車從A地到B地可以少走多少千米?(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(1,4),B(4,n)兩點.

(1)求反比例函數(shù)的解析式;

(2)求一次函數(shù)的解析式;

(3)點P是x軸上的一動點,試確定點P并求出它的坐標(biāo),使PA+PB最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)yx+4的圖象與反比例函數(shù)y(k為常數(shù)且k0)的圖象交于A(1,a)B兩點,與x軸交于點C

(1)a,k的值及點B的坐標(biāo);

(2)若點Px軸上,且SACPSBOC,直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:AD是正△ABC的高,OAD上一點,⊙O經(jīng)過點D,分別交AB、ACE、F

1)求∠EDF的度數(shù);

2)若AD6,求△AEF的周長;

3)設(shè)EFAD相較于N,若AE3EF7,求DN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°CDAB邊上的高,若點A關(guān)于CD所在直線的對稱點E恰好為AB的中點,則∠B的度數(shù)是( )

A. 60°B. 45°C. 30°D. 75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有兩張完全重合的矩形紙片,小亮同學(xué)將其中一張繞點A順時針旋轉(zhuǎn)90°后得到矩形AMEF(如圖1),連接BD、MF,若此時他測得BD=8cm,∠ADB=30度.請回答下列問題:(1)試探究線段BD與線段MF的關(guān)系,并簡要說明理由;

(2)小紅同學(xué)用剪刀將△BCD與△MEF剪去,與小亮同學(xué)繼續(xù)探究.他們將△ABD繞點A順時針旋轉(zhuǎn)得△AB1D1,AD1FM于點K(如圖2),設(shè)旋轉(zhuǎn)角為β(0°<β<90°),當(dāng)△AFK為等腰三角形時,請直接寫出旋轉(zhuǎn)角β的度數(shù);

(3)若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F(xiàn)2M2AD交于點P,A2M2BD交于點N,當(dāng)NP∥AB時,求平移的距離是多少?

查看答案和解析>>

同步練習(xí)冊答案