【題目】如圖,△ABC和△CDE都是等邊三角形,A、C、E在一條直線上.
(1)線段AD與BE相等嗎?請證明你的結(jié)論;
(2)設AD與BE交于點O,求∠AOE的度數(shù).
【答案】(1)AD=BE;(2)120°.
【解析】
(1) 利用等邊三角形的性質(zhì)得到一對角相等,一對邊相等,利用等式的性質(zhì)得到夾角相等,利用SAS得到三角形ACD與三角形BCE全等,利用全等三角形的對應邊相等即可得證.
(2)利用三角形全等,轉(zhuǎn)化相關角度即可解答.
解:(1)AD=BE,
理由如下:在等邊△ABC和等邊△CDE中,
∵∠ACB=∠DCE=60°,
∴∠ACD=∠BCE,
又∵AC=BC,CD=CE,
∴△ACD≌△BCE(SAS),
∴AD=BE.
(2)∵△ACD≌△BCE,
∴∠CAD=∠CBE,
∵∠ACB=∠CBE+∠AEB=60°,
∴∠CAD+∠AEB=60°,
∴∠AOE=180°﹣(∠CAD+∠AEB)=120°.
科目:初中數(shù)學 來源: 題型:
【題目】對非負實數(shù)x“四舍五入”到個位的值記為(x).即當n為非負整數(shù)時,若,則(x)=n.如(0.46)=0,(3.67)=4.
給出下列關于(x)的結(jié)論:
①(1.493)=1;
②(2x)=2(x);
③若()=4,則實數(shù)x的取值范圍是9≤x<11;
④當x≥0,m為非負整數(shù)時,有(m+2019x)=m+(2019x);
⑤(x+y)=(x)+(y);
其中,正確的結(jié)論有__________(填寫所有正確的序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△DEF是△ABC經(jīng)過某種變換得到的圖形,點A與點D,點B與點E,
點C與點F分別是對應點,觀察點與點的坐標之間的關系,解答下列問題:
(1)分別寫出點A與點D,點B與點E,點C與點F的坐標,并說說對應點的坐標有哪些特征;
(2)若點P(a+3,4﹣b)與點Q(2a,2b﹣3)也是通過上述變換得到的對應點,求a,b的值.
(3)求圖中△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,E、F、G、H依次是各邊中點,O是形內(nèi)一點,若四邊形AEOH、四邊形BFOE、四邊形CGOF的面積分別是4、5、6,則四邊形DHOG的面積是( )
A. 5B. 4C. 8D. 6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,BC邊上有一點E,BE=4,將紙片折疊,使A點與E點重合,折痕MN交AD于M點,則線段AM的長是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知某個圖形是按下面方法連接而成的:(0,0)→(2,0);(1,0)→(0,﹣1);(1,1)→(1,﹣2);(1,0)→(2,﹣1).
(1)請連接圖案,它是一個什么漢字?
(2)作出這個圖案關于y軸的軸對稱圖形,并寫出新圖案相應各端點的坐標,你得到一個什么漢字?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖①,在△ABC中,∠ABC、∠ACB的平分線相交于點O,∠A=40°,求∠BOC的度數(shù);
(2)如圖②,△A′B′C′的外角平分線相交于點O′,∠A′=40°,求∠B′O′C′的度數(shù);
(3)上面(1)(2)兩題中的∠BOC與∠B′O′C′ 有怎樣的數(shù)量關系?若∠A=∠A′=n°,∠BOC與∠B′O′C′ 是否還具有這樣的關系?這個結(jié)論你是怎樣得到的?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=﹣x2+2x+2
(1)求該拋物線的對稱軸、頂點坐標以及y隨x變化情況;
(2)在如圖的直角坐標系內(nèi)畫出該拋物線的圖象.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com