(2013•黃石)把一副三角板如圖甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜邊AB=6,DC=7,把三角板DCE繞點C順時針旋轉(zhuǎn)15°得到△D1CE1(如圖乙),此時AB與CD1交于點O,則線段AD1的長為(  )
分析:先求出∠ACD=30°,再根據(jù)旋轉(zhuǎn)角求出∠ACD1=45°,然后判斷出△ACO是等腰直角三角形,再根據(jù)等腰直角三角形的性質(zhì)求出AO、CO,AB⊥CO,再求出OD1然后利用勾股定理列式計算即可得解.
解答:解:∵∠ACB=∠DEC=90°,∠D=30°,
∴∠DCE=90°-30°=60°,
∴∠ACD=90°-60°=30°,
∵旋轉(zhuǎn)角為15°,
∴∠ACD1=30°+15°=45°,
又∵∠A=45°,
∴△ACO是等腰直角三角形,
∴AO=CO=
1
2
AB=
1
2
×6=3,AB⊥CO,
∵DC=7,
∴D1C=DC=7,
∴D1O=7-3=4,
在Rt△AOD1中,AD1=
AO2+D1O2
=
32+42
=5.
故選B.
點評:本題考查了旋轉(zhuǎn)的性質(zhì),等腰直角三角形的判定與性質(zhì),勾股定理的應(yīng)用,根據(jù)等腰直角三角形的性質(zhì)判斷出AB⊥CO是解題的關(guān)鍵,也是本題的難點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•黃石模擬)今年我區(qū)參加初中畢業(yè)、升學(xué)考試的學(xué)生有4993人,把4993保留兩個有效數(shù)字,用科學(xué)記數(shù)法表示為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•黃石模擬)如圖,在矩形紙片ABCD中,AB=3,BC=4.把△BCD沿對角線BD折疊,使點C落在E處,BE交AD于點F;
(1)求證:AF=EF;
(2)求tan∠ABF的值;
(3)連接AC交BE于點G,求AG的長.

查看答案和解析>>

同步練習(xí)冊答案