【題目】花粉的質(zhì)量很小,一粒某種植物花粉的質(zhì)量約為0000037毫克,已知1克=1000毫克,那么0000000037毫克可用科學(xué)記數(shù)法表示為(  )

A.3.7×105B.3.7×106C.37×107D.3.7×108

【答案】D

【解析】

根據(jù)科學(xué)記數(shù)法的定義和表示方法即可得解.

解:000000003737×108,

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,王虎使一長為4 cm,寬為3 cm的長方形木板,在桌面上做無滑動地翻滾(順時(shí)針方向),木板上點(diǎn)A位置變化為AA1A2,其中第二次翻滾被桌面上一小木塊擋住,使木板與桌面成30°角,則點(diǎn)A翻滾到A2位置時(shí)共走過的路徑長為?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】你能用一張長方形的紙片折出一個(gè)正三角形嗎?動手試一試,簡單敘述你的折法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AM∥CN,點(diǎn)B為平面內(nèi)一點(diǎn),AB⊥BC于B.

(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關(guān)系________;

(2)如圖2,過點(diǎn)B作BD⊥AM于點(diǎn)D,求證:∠ABD=∠C;

(3)如圖3,在(2)問的條件下,點(diǎn)E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場為了吸引顧客,設(shè)立了可以自由轉(zhuǎn)動的轉(zhuǎn)盤(如圖,轉(zhuǎn)盤被均勻分為20份),并規(guī)定:顧客每購買200元的商品,就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機(jī)會.如果轉(zhuǎn)盤停止后,指針正好對準(zhǔn)紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得200元、100元、50元的購物券,憑購物券可以在該商場繼續(xù)購物.如果顧客不愿意轉(zhuǎn)轉(zhuǎn)盤,那么可以直接獲得購物券30元.

(1)求轉(zhuǎn)動一次轉(zhuǎn)盤獲得購物券的概率;

(2)轉(zhuǎn)轉(zhuǎn)盤和直接獲得購物券,你認(rèn)為哪種方式對顧客更合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級為了解學(xué)生課堂發(fā)言情況,隨機(jī)抽取該年級部分學(xué)生,對他們某天在課堂上發(fā)言的次數(shù)進(jìn)行了統(tǒng)計(jì),其結(jié)果如下表,并繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,已知B、E兩組發(fā)言人數(shù)的比為5:2,請結(jié)合圖中相關(guān)數(shù)據(jù)回答下列問題:

發(fā)言次數(shù)n

A

0≤n<3

B

3≤n<6

C

6≤n<9

D

9≤n<12

E

12≤n<15

F

15≤n<18


(1)求出樣本容量,并補(bǔ)全直方圖;
(2)該年級共有學(xué)生500人,請估計(jì)全年級在這天里發(fā)言次數(shù)不少于12次的人數(shù);
(3)已知A組發(fā)言的學(xué)生中恰有1位女生,E組發(fā)言的學(xué)生中有2位男生.現(xiàn)從A組與E組中分別抽一位學(xué)生寫報(bào)告,請用列表法或畫樹狀圖的方法,求所抽的兩位學(xué)生恰好是一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ai≠0(i=1,2,…,2012)滿足 ,使直線y=aix+i(i=1,2,…,2012)的圖象經(jīng)過一、二、四象限的ai概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一種包裝盒的表面展開圖,將它圍起來可得到一個(gè)幾何體的模型.

1)這個(gè)幾何體模型的名稱是

2)如圖2是根據(jù)a,b,h的取值畫出的幾何體的主視圖和俯視圖(圖中實(shí)線表示的長方形),請?jiān)诰W(wǎng)格中畫出該幾何體的左視圖.

3)若h=a+b,且ab滿足a2+b2﹣a﹣6b+10=0,求該幾何體的表面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△DEF是兩個(gè)全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點(diǎn)E與△ABC的斜邊BC的中點(diǎn)重合.將△DEF繞點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點(diǎn)P,線段EF與射線CA相交于點(diǎn)Q.
(1)如圖①,當(dāng)點(diǎn)Q在線段AC上,且AP=AQ時(shí),求證:△BPE≌△CQE;
(2)如圖②,當(dāng)點(diǎn)Q在線段CA的延長線上時(shí),求證:△BPE∽△CEQ;并求當(dāng)BP=a,CQ= 時(shí),P、Q兩點(diǎn)間的距離 (用含a的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊答案