已知直線y=ax-2經(jīng)過點(diǎn)(-3,-8)和(
12
,b)
兩點(diǎn),那么a=
 
,b=
 
分析:把(-3,-8)代入y=ax-2求出a的值,進(jìn)而求出函數(shù)解析式,把(
1
2
,b)代入解析式即可.
解答:解:把(-3,-8)代入y=ax-2得,-8=-3a-2,
解得a=2,
∴解析式為y=2x-2,
把(
1
2
,b)代入y=2x-2得,b=2×
1
2
-2,
解得b=-1.
故答案為:a=2,b=-1.
點(diǎn)評(píng):此題考查了待定系數(shù)法和函數(shù)圖象上點(diǎn)的坐標(biāo)特征,二者組合考查是考試中常見的題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知直線y=ax-4a+5不經(jīng)過第二象限,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

8、已知直線y=ax+b(a≠0)經(jīng)過一、三、四象限,則拋物線y=ax2+bx一定經(jīng)過( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•衡水二模)已知直線y=ax(a≠0)與雙曲線y=
k
x
(k≠0)的一個(gè)交點(diǎn)坐標(biāo)為(-2,3),則它們的另一個(gè)交點(diǎn)坐標(biāo)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直線y=ax+b(a≠0)與反比例函數(shù)y=
kx
(k≠0)
交于A、B兩點(diǎn),其中A(-1,-2)與B(2,n),
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)若點(diǎn)C(-1,0),則在平面直角坐標(biāo)系中是否存在點(diǎn)D,使得以A,B,C,D四點(diǎn)為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫出D的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案