【題目】如圖在平面直角坐標系中,點A(-2,4),B(4,2),在x軸上取一點P,使點P到點A和點B的距離之和最小,則點P的坐標是( )

A. (-2,0) B. (0,0) C. (2,0) D. (4,0)

【答案】C

【解析】

A關于x軸的對稱點C,連接ACx軸于D,連接BC交交x軸于P,連接AP,此時點P到點A和點B的距離之和最小,求出C(的坐標,設直線CB的解析式是y=kx+b,把C、B的坐標代入求出解析式是y=x-2,把y=0代入求出x即可.

如圖:

A關于x軸的對稱點C,連接ACx軸于D,連接BC交交x軸于P,連接AP,則此時AP+PB最小,

即此時點P到點A和點B的距離之和最小,

A(-2,4),

C(-2,-4),

設直線CB的解析式是y=kx+b,

C、B的坐標代入得:

解得:k=1,b=-2,

y=x-2,

y=0代入得:0=x-2,

x=2,

P的坐標是(2,0),

故選:C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將長方形ABCD沿直線BD折疊,使點C落在點C′處,BC′ADE,AD=8AB=4.求△BED 的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知A組數(shù)據(jù)為2、3、6、6、7、8、8、8,B組數(shù)據(jù)為4、5、8、8、9、10、10、10,則描述A、B兩組數(shù)據(jù)的統(tǒng)計量中相等的是( 。

A. 眾數(shù) B. 中位數(shù) C. 平均數(shù) D. 方差

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形可看成是分別以、、、為位似中心將正方形放大一倍得到的圖形(正方形的邊長放大到原來的倍),由正方形到正方形,我們稱之作了一次變換,再將正方形作一次變換就得到正方形,…,依此下去,作了次變換后得到正方形,若正方形的面積是,那么正方形的面積是多少(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在△ABC中,AC=BC∠ACB=90°,點DAB的中點,點EAB邊上一點.

1)直線BF垂直于直線CE于點F,交CD于點G(如圖1),求證:AE=CG;

2)直線AH垂直于直線CE,垂足為點H,交CD的延長線于點M(如圖2),找出圖中與BE相等的線段,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A、B⊙O上,直線AC⊙O的切線,OC⊥OB,連接ABOC于點D

1ACCD相等嗎?為什么?

2)若AC=2,AO=,求OD的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,一塊RtABC的綠地,量得兩直角邊AC=8cmBC=6cm.現(xiàn)在要將這塊綠地擴充成等腰△ABD,且擴充部分(△ADC)是以8cm為直角邊長的直角三角形,求擴充等腰△ABD的周長.

1)在圖1中,當AB=AD=10cm時,△ABD的周長為

2)在圖2中,當BA=BD=10cm時,△ABD的周長為

3)在圖3中,當DA=DB時,求△ABD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是用個相同的小長方形與個小正方形鑲嵌而成的正方形圖案,已知該圖案的面積為,小正方形的面積為,若用表示小長方形的兩邊長() ,請觀察圖案,指出以下關系式中,不正確的是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于多項式Ax2bxcb、c為常數(shù)),作如下探究:

1)不論x取何值,A都是非負數(shù),求bc滿足的條件;

2)若A是完全平方式,

①當c=9時,b= ;b=3時,c= ;

②若多項式Bx2dxcA有公因式,求d的值.

查看答案和解析>>

同步練習冊答案