【題目】如圖,拋物線軸于兩點,交軸于點.直線經(jīng)過點,

()求拋物線的解析式;

()過點于點,過拋物線上一動點(不與點重合),作直線的平行線交直線于點,若以點為頂點的四邊形是平行四邊形,求點的橫坐標(biāo).

【答案】();()的橫坐標(biāo)為4.

【解析】

()利用一次函數(shù)解析式可得BC兩點坐標(biāo),再利用待定系數(shù)法求出拋物線的解析式即可;()先解方程可求出A點坐標(biāo),根據(jù)BC坐標(biāo)可證明△OCB為等腰直角三角形,可求出AM的長,根據(jù)平行四邊形的性質(zhì)可得PQ=AM=2,PQBC,作軸交直線,利用∠PDQ=45°可得PD=PQ=4,設(shè)P(m,-m2+6m-5),則D(m,m-5),分別討論P點在BC的上方時,PD=-m2+6m-5-m-5=4,P點在BC下方時,PD=(m-5)-( -m2+6m-5)=4,解方程求出m的值即可得P點橫坐標(biāo).

()當(dāng)時,,則.

當(dāng)時,,解得,則.

代入

.

解得

∴拋物線解析式為.

()解方程,則,

為等腰直角三角形.

.

,

為等腰直角三角形.

.

∵以點為頂點的四邊形是平行四邊形,

.

如圖,作軸交直線,則,

.

設(shè),則,

①當(dāng)點在直線上方時,

解得(),.

②當(dāng)點在直線下方時,

,

解得.

綜上所述,點的橫坐標(biāo)為4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場為了吸引顧客,舉行抽獎活動,并規(guī)定:顧客每購買100元的商品,就可隨機抽取一張獎劵,抽得獎券“紫氣東來”、“花開富貴”、“吉星高照”,就可以分別獲得100元、50元、20元的購物券,抽得“謝謝惠顧”不贈購物券;如果顧客不愿意抽獎,可以直接獲得購物券10元.小明購買了100元的商品,他看到商場公布的前10000張獎券的抽獎結(jié)果如下:

1)求“紫氣東來”獎券出現(xiàn)的頻率;

2)請你幫助小明判斷,抽獎和直接獲得購物券,哪種方式更合算?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若反比例函數(shù)y與一次函數(shù)y2x4的圖象都經(jīng)過點A(a,2)

(1)求反比例函數(shù)y的表達(dá)式;

(2)當(dāng)反比例函數(shù)y的值大于一次函數(shù)y2x4的值時,求自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鐵嶺“荷花節(jié)”舉辦了為期15天的“荷花美食”廚藝秀.小張購進(jìn)一批食材制作特色美食,每盒售價為50元,由于食材需要冷藏保存,導(dǎo)致成本逐日增加,第x天(1≤x≤15且x為整數(shù))時每盒成本為p元,已知p與x之間滿足一次函數(shù)關(guān)系;第3天時,每盒成本為21元;第7天時,每盒成本為25元,每天的銷售量為y盒,y與x之間的關(guān)系如下表所示:

第x天

1≤x≤6

6<x≤15

每天的銷售量y/盒

10

x+6

(1)求p與x的函數(shù)關(guān)系式;

(2)若每天的銷售利潤為w元,求w與x的函數(shù)關(guān)系式,并求出第幾天時當(dāng)天的銷售利潤最大,最大銷售利潤是多少元?

(3)在“荷花美食”廚藝秀期間,共有多少天小張每天的銷售利潤不低于325元?請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解居民的環(huán)保意識,社區(qū)工作人員在某小區(qū)隨機抽取了若干名居民開展有獎問卷調(diào)查活動,并用得到的數(shù)據(jù)繪制了如下條形統(tǒng)計圖(得分為整數(shù),滿分為10分,最低分為6).請根據(jù)圖中信息,解答下列問題:

()本次調(diào)查一共抽取了______名居民;

()求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

()如果對該小區(qū)的名居民全面開展這項有獎問答活動,得分者設(shè)為一等獎,請你根據(jù)調(diào)查結(jié)果,幫社區(qū)工作人員估計需準(zhǔn)備多少份一等獎獎品.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABCD沿EF對折,使點A落在點C處,若∠A=60°,AD=4,AB=6,則AE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸分別交于,兩點.

1)求拋物線的解析式;

2)在第二象限內(nèi)取一點,作垂直于軸于點,連接,且,,將沿軸向右平移個單位,當(dāng)點落在拋物線上時,求的值;

3)在(2)的條件下,當(dāng)點第一次落在拋物線上時記為點,點是拋物線對稱軸上一點.試探究:在拋物線上是否存在點,使以點、、為頂點的四邊形是平行四邊形,若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線軸正半軸交于點,與軸分別交于點和點

1)求拋物線的解析式;

2)點軸上一點,當(dāng)相似時,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某品牌太陽能熱火器的實物圖和橫斷面示意圖,已知真空集熱管與支架所在直線相交于水箱橫斷面的圓心,支架與水平面垂直,厘米,,另一根輔助支架厘米,

1)求垂直支架的長度;(結(jié)果保留根號)

2)求水箱半徑的長度.(結(jié)果保留三個有效數(shù)字,參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊答案