【題目】我們把有一條邊是另一條邊的2倍的梯形叫做“倍邊梯形”,在⊙O中,直徑AB=2,PQ是弦,若四邊形ABPQ是“倍邊梯形”,那么PQ的長為_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了美化城市環(huán)境,某街道重修了路面,準(zhǔn)備將老舊的路燈換成LED太陽能路燈,計劃購買海螺臂和A字臂兩種型號的太陽能路燈共100只,經(jīng)過市場調(diào)查:購買海螺臂太陽能路燈1只,A字臂太陽能路燈2只共需2300元;購買海螺臂太陽能路燈3只,A字臂太陽能路燈4只共需5400元.
(1)求海螺臂太陽能路燈和A字臂太陽能路燈的單價:
(2)在實際購買時,恰逢商家活動,購買海螺臂太陽能路燈超過20只時,超過的部分打九折優(yōu)惠,A字臂太陽能路燈全部打八折優(yōu)惠;若規(guī)定購買的海螺臂太陽能路燈的數(shù)量不少于A字臂太陽能路燈的數(shù)量的一半,請你設(shè)計一種購買方案,使得總費用最少,并求出最小總費用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點D在⊙O上,過點D的切線交直徑AB的延長線于點P,DC⊥AB于點C.
(1)求證:DB平分∠PDC;
(2)如果DC = 6,,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,是直徑,點是上一點,點是的中點,于點,過點的切線交的延長線于點,連接,分別交于點,連接,交于下列結(jié)論:
①;
②;
③點是的外心,
④
其中正確結(jié)論是_________________(只需填寫序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是△ABC的角平分線,過點D作DE∥BC交AB于點E,DF∥AB交BC于點F.
(1)求證:四邊形BEDF為菱形;
(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解學(xué)生的安全意識情況,在全校范圍內(nèi)隨機抽取部分學(xué)生進(jìn)行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把學(xué)生的安全意識分成“淡薄”、“一般”、“較強”、“很強”四個層次,并繪制成如圖9的兩幅尚不完整的統(tǒng)計圖.
根據(jù)以上信息,解答下列問題:
(1)這次調(diào)查一共抽取了 名學(xué)生;
(2)請將條形統(tǒng)計圖補充完整;
(3)分別求出安全意識為“淡薄”的學(xué)生占被調(diào)查學(xué)生總數(shù)的百分比、安全意識為“很強”的學(xué)生所在扇形的圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解某校落實新課改精神的情況,現(xiàn)以該校九年級二班的同學(xué)參加課外活動的情況為樣本,對其參加“球類”、“繪畫類”、“舞蹈類”、“音樂類”、“棋類”活動的情況進(jìn)行調(diào)查統(tǒng)計,并繪制了如圖所示的統(tǒng)計圖.
(1)參加音樂類活動的學(xué)生人數(shù)為 人,參加球類活動的人數(shù)的百分比為 ;
(2)該校學(xué)生共600人,則參加棋類活動的人數(shù)約為 ;
(3)該班參加舞蹈類活動的四位同學(xué)中,有一位男生(用E表示)和3位女生(分別用F,G,H表示),先準(zhǔn)備從中選取兩名同學(xué)組成舞伴,請用列表或畫樹狀圖得方法求恰好選中一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線y=ax2+bx+3=0(a≠0)與x軸交于點A(1,0)和點B(﹣3,0),與y軸交于點C
(1)求拋物線的解析式;
(2)設(shè)拋物線的對稱軸與x軸交于點M,請問在對稱軸上是否存在點P,使△CMP為等腰三角形?若存在,請求出所有符合條件的點P的坐標(biāo);若不存在,請說明理由;
(3)在拋物線的對稱軸上是否存在點Q,使得△QAC的周長最?若存在,求出Q點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,對角線AC與BD相交于點O,過點O作直線EF⊥BD,且交AC于點E,交BC于點F,連接BE、DF,且BE平分∠ABD.
(1)①求證:四邊形BFDE是菱形;②求∠EBF的度數(shù).
(2)把(1)中菱形BFDE進(jìn)行分離研究,如圖2,G,I分別在BF,BE邊上,且BG=BI,連接GD,H為GD的中點,連接FH,并延長FH交ED于點J,連接IJ,IH,IF,IG.試探究線段IH與FH之間滿足的數(shù)量關(guān)系,并說明理由;
(3)把(1)中矩形ABCD進(jìn)行特殊化探究,如圖3,矩形ABCD滿足AB=AD時,點E是對角線AC上一點,連接DE,作EF⊥DE,垂足為點E,交AB于點F,連接DF,交AC于點G.請直接寫出線段AG,GE,EC三者之間滿足的數(shù)量關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com