某公司生產(chǎn)的一種健身產(chǎn)品在市場(chǎng)上受到普遍歡迎,每年可在國(guó)內(nèi)、國(guó)外市場(chǎng)上全部售完,該公司的年產(chǎn)量為6千件,若在國(guó)內(nèi)市場(chǎng)銷(xiāo)售,平均每件產(chǎn)品的利潤(rùn)y1(元)與國(guó)內(nèi)銷(xiāo)售數(shù)量x(千件)的關(guān)系為:y1=若在國(guó)外銷(xiāo)售,平均每件產(chǎn)品的利潤(rùn)y2(元)與國(guó)外的銷(xiāo)售數(shù)量t(千件)的關(guān)系為: y2=
(1)用x的代數(shù)式表示t,則t=__________;當(dāng)0<x≤3時(shí),y2與x的函數(shù)關(guān)系式為:y2=__________________;當(dāng)3≤x<________時(shí),y2=100;
(2)當(dāng)3≤x<6時(shí),求每年該公司銷(xiāo)售這種健身產(chǎn)品的總利潤(rùn)w(千元)與國(guó)內(nèi)的銷(xiāo)售數(shù)量x(千件)的函數(shù)關(guān)系式,并求此時(shí)的最大利潤(rùn).

(1)6-x,5x+80,6;(2)W=-5(x-5)2+725,最大利潤(rùn)為725千元.

解析試題分析:(1)國(guó)內(nèi)銷(xiāo)售數(shù)量+國(guó)外銷(xiāo)售數(shù)量=6千件就可以表示出x與t之間的關(guān)系式;
(2)根據(jù)銷(xiāo)售總利潤(rùn)=國(guó)內(nèi)銷(xiāo)售利潤(rùn)+國(guó)外銷(xiāo)售利潤(rùn),求出W與x之間的數(shù)量關(guān)系就可以得出結(jié)論.
試題解析:(1)由題意,得x+t=6,
∴t=6-x;

∴當(dāng)0<x≤3時(shí),3≤6-x<6,即3≤t<6,
此時(shí)y2與x的函數(shù)關(guān)系為:y2=-5(6-x)+115=5x+85;
當(dāng)3≤x<6時(shí),0<6-x≤2,即0<t≤3,
此時(shí)y2=100.
(2)由題意,得
W=(-5x+150)x+100(6-x),
=-5x2+150x+600-100x;
=-5x2+50x+600,
∴W=-5(x-5)2+725.
∴a=-5<0,拋物線開(kāi)口向下
∴x=5時(shí),W最大=725.
∴國(guó)內(nèi)5千件,國(guó)外1千件,最大利潤(rùn)為725千元.
考點(diǎn): 二次函數(shù)的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

平面直角坐標(biāo)第xoy中,A點(diǎn)的坐標(biāo)為(0,5).B、C分別是x軸、y軸上的兩個(gè)動(dòng)點(diǎn),C從A出發(fā),沿y軸負(fù)半軸方向以1個(gè)單位/秒的速度向點(diǎn)O運(yùn)動(dòng),點(diǎn)B從O出發(fā),沿x軸正半軸方向以1個(gè)單位/秒的速度運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,點(diǎn)D是線段OB上一點(diǎn),且BD=OC.點(diǎn)E是第一象限內(nèi)一點(diǎn),且AEDB.
(1)當(dāng)t=4秒時(shí),求過(guò)E、D、B三點(diǎn)的拋物線解析式.
(2)當(dāng)0<t<5時(shí),(如圖甲),∠ECB的大小是否隨著C、B的變化而變化?如果不變,求出它的大小.
(3)求證:∠APC=45°
(4)當(dāng)t>5時(shí),(如圖乙)∠APC的大小還是45°嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在直角梯形ABCD中,∠D=∠BCD=90°,∠B=60°,AB = 6,AD = 9,點(diǎn)E是CD上的一個(gè)動(dòng)點(diǎn)(E不與D重合),過(guò)點(diǎn)E作EF∥AC,交AD于點(diǎn)F(當(dāng)E運(yùn)動(dòng)到C時(shí),EF與AC重合),把△DEF沿著EF對(duì)折,點(diǎn)D的對(duì)應(yīng)點(diǎn)是點(diǎn)G,如圖①.

⑴ 求CD的長(zhǎng)及∠1的度數(shù);
⑵ 設(shè)DE = x,△GEF與梯形ABCD重疊部分的面積為y.求y與x之間的函數(shù)關(guān)系式,并求x為何值時(shí),y的值最大?最大值是多少?
⑶ 當(dāng)點(diǎn)G剛好落在線段BC上時(shí),如圖②,若此時(shí)將所得到的△EFG沿直線CB向左平移,速度為每秒1個(gè)單位,當(dāng)E點(diǎn)移動(dòng)到線段AB上時(shí)運(yùn)動(dòng)停止.設(shè)平移時(shí)間為t(秒),在平移過(guò)程中是否存在某一時(shí)刻t,使得△ABE為等腰三角形?若存在,請(qǐng)直接寫(xiě)出對(duì)應(yīng)的t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某商店經(jīng)銷(xiāo)一種銷(xiāo)售成本為每千克40元的水產(chǎn)品.根據(jù)市場(chǎng)分析,若按每千克50元銷(xiāo)售,一個(gè)月能銷(xiāo)售500千克;銷(xiāo)售單價(jià)每漲1元,月銷(xiāo)售量就減少10千克.針對(duì)這種水產(chǎn)品的銷(xiāo)售情況,請(qǐng)解答以下問(wèn)題:
(1)當(dāng)銷(xiāo)售單價(jià)定為每千克55元時(shí),計(jì)算月銷(xiāo)售量和月銷(xiāo)售利潤(rùn);
(2)設(shè)銷(xiāo)售單價(jià)為每千克x元,月銷(xiāo)售利潤(rùn)為y元,求y與x之間的函數(shù)關(guān)系式;
(3)商店想在月銷(xiāo)售成本不超過(guò)10 000元的情況下,使得月銷(xiāo)售利潤(rùn)達(dá)到5 000元,銷(xiāo)售單價(jià)應(yīng)定為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平行四邊形ABCD中,AB=5,BC=10,F(xiàn)為AD的中點(diǎn),CE⊥AB于E,設(shè)∠ABC=α(60°≤α<90°).

(1)當(dāng)α=60°時(shí),求CE的長(zhǎng);
(2)當(dāng)60°<α<90°時(shí),
①是否存在正整數(shù)k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.
②連接CF,當(dāng)CE2-CF2取最大值時(shí),求tan∠DCF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知拋物線y=x2-1與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.

(1)求A、B、C三點(diǎn)的坐標(biāo).
(2)過(guò)點(diǎn)A作AP∥CB交拋物線于點(diǎn)P,求四邊形ACBP的面積.
(3)在軸上方的拋物線上是否存在一點(diǎn)M,過(guò)M作MG軸于點(diǎn)G,使以A、M、G三點(diǎn)為頂點(diǎn)的三角形與PCA相似.若存在,請(qǐng)求出M點(diǎn)的坐標(biāo);否則,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

近期,海峽兩岸關(guān)系的氣氛大為改善.大陸相關(guān)部門(mén)對(duì)原產(chǎn)臺(tái)灣地區(qū)的15種水果實(shí)施進(jìn)口零關(guān)稅措施,擴(kuò)大了臺(tái)灣水果在大陸的銷(xiāo)售.某經(jīng)銷(xiāo)商銷(xiāo)售了臺(tái)灣水果鳳梨,根據(jù)以往銷(xiāo)售經(jīng)驗(yàn),每天的售價(jià)與銷(xiāo)售量之間有如下關(guān)系:

每千克售價(jià)(元)
40
39
38
37

30
每天銷(xiāo)量(千克)
60
65
70
75

110
設(shè)當(dāng)單價(jià)從40元/千克下調(diào)了x元時(shí),銷(xiāo)售量為y千克;
(1)寫(xiě)出y與x間的函數(shù)關(guān)系式;
(2)如果鳳梨的進(jìn)價(jià)是20元/千克,若不考慮其他情況,那么單價(jià)從40元/千克下調(diào)多少元時(shí),當(dāng)天的銷(xiāo)售利潤(rùn)W最大?利潤(rùn)最大是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

圖中是拋物線形拱橋,當(dāng)水面寬AB=8米時(shí),拱頂?shù)剿娴木嚯xCD=4米.如果水面上升1米,那么水面寬度為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

拋物線y=ax2+2x+c與其對(duì)稱(chēng)軸相交于點(diǎn)A(1,4),與x軸正半軸交于點(diǎn)B.
(1)求這條拋物線的函數(shù)關(guān)系式;
(2)在拋物線對(duì)稱(chēng)軸上確定一點(diǎn)C,使△ABC是等腰三角形,求出所有點(diǎn)C的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案