【題目】如圖,二次函數(shù)y=ax2+bx+4與y軸交于C點,與x軸交于A、B兩點,其中A點坐標為(﹣2,0),B點坐標為(8,0).
(1)求經(jīng)過A,B,C三點的拋物線的解析式;
(2)如果M為拋物線的頂點,連接CM、BM,求四邊形COBM的面積.
【答案】(1);(2)31
【解析】
(1)根據(jù)二次函數(shù)與x軸交于A、B兩點,其中A點坐標為(﹣2,0),B點坐標為(8,0),從而可以求得經(jīng)過A,B,C三點的拋物線的解析式;
(2)根據(jù)(1)中的函數(shù)解析式,從而可以得到點C和點M的坐標,然后即可得到四邊形COBM的面積.
(1)∵二次函數(shù)與x軸交于A、B兩點,其中A點坐標為(﹣2,0),B點坐標為(8,0),
∴,得,
即經(jīng)過A,B,C三點的拋物線的解析式是;
(2)∵,
∴點C的坐標為(0,4),點M的坐標為(3,),
∴四邊形COBM的面積是:,
即四邊形COBM的面積是31.
科目:初中數(shù)學 來源: 題型:
【題目】東營市某學校九年級一班開展了“讀一本好書”的活動,班委會對學生閱讀書籍的情況進行了問卷調(diào)查,問卷設置了“小說”、“戲劇”、“散文”、“其他”四個類別,每位同學僅選一項,根據(jù)調(diào)查結(jié)果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計圖.根據(jù)圖表提供的信息,回答下列問題:
類別 | 頻數(shù)(人數(shù)) | 頻率 |
小說 | 0.5 | |
戲劇 | 4 | n |
散文 | 10 | 0.25 |
其他 | 6 | |
合計 | m | 1 |
(1)計算m= ,n= .
(2)在扇形統(tǒng)計圖中,“其他”類所在的扇形圓心角為 ;
(3)這個學校共有1000人,則讀了戲劇類書籍的學生大約有多少人?
(4)在調(diào)查問卷中,甲、乙、丙、丁四位同學選擇了“戲劇”類,現(xiàn)從中任意選出2名同學參加學校的戲劇社團,請用畫樹狀圖或列表的方法,求選取的2人恰好是乙和丙的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線l:y=﹣x+4,在直線l上取點B1,過B1分別向x軸,y軸作垂線,交x軸于A1,交y軸于C1,使四邊形OA1B1C1為正方形;在直線l上取點B2,過B2分別向x軸,A1B1作垂線,交x軸于A2,交A1B1于C2,使四邊形A1A2B2C2為正方形;按此方法在直線l上順次取點B3,B4,…,Bn,依次作正方形A2A3B3C3,A3A4B4C4,…,An﹣1AnBnCn,則A3的坐標為___,B5的坐標為___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC (BC>AD),∠D=90°,∠ABE=45°,BC=CD,
若AE=5,CE=2,則BC的長度為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知平行四邊形ABCD.
(1)若M,N是BD上兩點,且BM=DN,AC=2OM,求證:四邊形AMCN是矩形;
(2)若∠BAD=120°,CD=4,AB⊥AC,求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形ABCD的邊長為3,點E在直線CD上,且DE=1,連接BE,作AF⊥BE于點H,交直線BC于點F,連接EF,則EF的長是_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+x+6及一次函數(shù)y=﹣x+m,將該二次函數(shù)在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新函數(shù)(如圖所示),請你在圖中畫出這個新圖象,當直線y=﹣x+m與新圖象有4個交點時,m的取值范圍是( )
A. ﹣<m<3 B. ﹣<m<2 C. ﹣2<m<3 D. ﹣6<m<﹣2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】體育老師對亮亮和薇薇兩名同學的立定跳遠進行了五次測試(滿分為10分),把他們的成績繪制成如下統(tǒng)計圖.根據(jù)圖中信息,下列說法正確的是( )
A.亮亮的跳遠成績比薇薇的跳遠成績穩(wěn)定
B.亮亮的成績越來越好,如果再跳一次一定還是10分
C.亮亮的第三次成績與第二次成績相比,增長率超過
D.亮亮和薇薇的成績都在8分上下波動,兩個人的成績穩(wěn)定性一樣
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com