如圖,正方形ABCD的四個(gè)頂點(diǎn)分別在四條平行線l1、l2、l3、l4上,這四條直
線中相鄰兩條之間的距離依次為h1、h2、h3(h1>0,h2>0,h3>0).
(1)求證:h1=h2;
(2)設(shè)正方形ABCD的面積為S,求證:S=(h1+h2)2+h12;
(3)若h1+h2=1,當(dāng)h1變化時(shí),說(shuō)明正方形ABCD的面積S隨h1的變化情況.
(1)過(guò)A點(diǎn)作AF⊥l3分別交l2、l3于點(diǎn)E、F,過(guò)C點(diǎn)作CH⊥l2分別交l2、l3于點(diǎn)H、G,證△ABE≌△CDG即可.
(2)易證△ABE≌△BCH≌△CDG≌△DAF,且兩直角邊長(zhǎng)分別為h1、h1+h2,四邊形EFGH是邊長(zhǎng)為h2的正方形,
所以.
(3)由題意,得 所以

    解得0<h1
∴當(dāng)0<h1時(shí),S隨h1的增大而減小;
當(dāng)h1=時(shí),S取得最小值;
當(dāng)<h1時(shí),S隨h1的增大而增大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2011•恩施州)如圖,四邊形ABCD中,AB=AC=AD,BC=CD,銳角∠BAC的角平分線AE交BC于點(diǎn)E,AF是CD邊上的中線,且PC⊥CD與AE交于點(diǎn)P,QC⊥BC與AF交于點(diǎn)Q.求證:四邊形APCQ是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(2011?江漢區(qū))已知?ABCD的周長(zhǎng)為28,自頂點(diǎn)A作AE⊥DC于點(diǎn)E,AF⊥BC于點(diǎn)F.若AE=3,AF=4,則CE﹣CF=  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(湖南湘西,3,3分)若一個(gè)正方形的邊長(zhǎng)為a,則這個(gè)正方形的周長(zhǎng)是_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2011•畢節(jié)地區(qū))已知梯形ABCD中,AD∥BC,AB=AD(如圖所示),∠BAD的平分線AE交BC于點(diǎn)E,連接DE.
(1)在下圖中,用尺規(guī)作∠BAD的平分線AE(保留作圖痕跡不寫作法),并證明四邊形ABED是菱形.
(2)若∠ABC=60°,EC=2BE.求證:ED⊥DC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在ABCD中,∠DAB=60°,AB=2AD,點(diǎn)E、F分別是AB、CD的中點(diǎn),過(guò)點(diǎn)A作AG∥BD,交CB的延長(zhǎng)線于點(diǎn)G。
(1)求證:四邊形DEBF是菱形;
(2)請(qǐng)判斷四邊形AGBD是什么特殊四邊形?并加以證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知正方形ABCD的邊長(zhǎng)為12cm,ECD邊上一點(diǎn),DE=5cm.以點(diǎn)A
為中心,將△ADE按順時(shí)針?lè)较蛐D(zhuǎn)得△ABF,則點(diǎn)E所經(jīng)過(guò)的路徑長(zhǎng)為    cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,點(diǎn)D、E、F分別是△ABC的邊AB,BC、CA的中點(diǎn),連接DE、EF、FD.則圖中平行四邊形的個(gè)數(shù)為__________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,中,AB=10,BC=6,E、F分別是AD、DC的中點(diǎn),若EF=7,則四邊形EACF的周長(zhǎng)是

A.20          B.22         C.29          D.31

查看答案和解析>>

同步練習(xí)冊(cè)答案