(1999•南昌)ab-(2ab-3a2b)的計(jì)算結(jié)果是( )
A.3a2b+3ab
B.-3a2b-ab
C.3a2b-ab
D.-3a2b+3ab
【答案】分析:此題首先去掉括號(hào),然后合并同類項(xiàng)即可求出結(jié)果.
解答:解:ab-(2ab-3a2b)
=ab-2ab+3a2b
=3a2b-ab.
故選C.
點(diǎn)評(píng):解決此類題目的關(guān)鍵是熟記去括號(hào)法則,及熟練運(yùn)用合并同類項(xiàng)的法則,其是各地中考的常考點(diǎn).注意去括號(hào)法則為:--得+,-+得-,++得+,+-得-.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:1999年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(04)(解析版) 題型:解答題

(1999•南昌)如圖,⊙O′與x軸交于A、B兩點(diǎn),與y軸交于C、D兩點(diǎn),圓心O′的坐標(biāo)為(1,-1),半徑為
(1)求A,B,C,D四點(diǎn)的坐標(biāo);
(2)求經(jīng)過點(diǎn)D的切線解析式;
(3)問過點(diǎn)A的切線與過點(diǎn)D的切線是否垂直?若垂直,請(qǐng)寫出證明過程;若不垂直,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(01)(解析版) 題型:解答題

(1999•南昌)拋物線y=ax2+bx+c(a>0)的頂點(diǎn)為B(-1,m)(m≠0),并且經(jīng)過點(diǎn)A(-3,0).
(1)求此拋物線的解析式(系數(shù)和常數(shù)項(xiàng)用含m的代數(shù)式表示);
(2)若由點(diǎn)A、原點(diǎn)O與拋物線上的一點(diǎn)P所構(gòu)成的三角形是等腰直角三角形,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:解答題

(1999•南昌)如圖,⊙O′與x軸交于A、B兩點(diǎn),與y軸交于C、D兩點(diǎn),圓心O′的坐標(biāo)為(1,-1),半徑為
(1)求A,B,C,D四點(diǎn)的坐標(biāo);
(2)求經(jīng)過點(diǎn)D的切線解析式;
(3)問過點(diǎn)A的切線與過點(diǎn)D的切線是否垂直?若垂直,請(qǐng)寫出證明過程;若不垂直,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年江西省南昌市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(1999•南昌)如圖,⊙O′與x軸交于A、B兩點(diǎn),與y軸交于C、D兩點(diǎn),圓心O′的坐標(biāo)為(1,-1),半徑為
(1)求A,B,C,D四點(diǎn)的坐標(biāo);
(2)求經(jīng)過點(diǎn)D的切線解析式;
(3)問過點(diǎn)A的切線與過點(diǎn)D的切線是否垂直?若垂直,請(qǐng)寫出證明過程;若不垂直,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年江西省南昌市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(1999•南昌)拋物線y=ax2+bx+c(a>0)的頂點(diǎn)為B(-1,m)(m≠0),并且經(jīng)過點(diǎn)A(-3,0).
(1)求此拋物線的解析式(系數(shù)和常數(shù)項(xiàng)用含m的代數(shù)式表示);
(2)若由點(diǎn)A、原點(diǎn)O與拋物線上的一點(diǎn)P所構(gòu)成的三角形是等腰直角三角形,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案