【題目】中華商場將進價為40元的襯衫按50元售出時,每月能賣出500件,經(jīng)市場調(diào)查,這種襯衫每件漲價4元,其銷售量就減少40件.如果商場計劃每月賺得8000元利潤,那么售價應(yīng)定為多少?這時每月應(yīng)進多少件襯衫?

【答案】當(dāng)售價定為60元時,每月應(yīng)進400件襯衫;售價定為80元時,每月應(yīng)進200件襯衫.

【解析】試題分析利用總利潤=單件利潤總銷售件數(shù),列一元二次方程,一元二次方程有兩個解,需要分類討論.

試題解析:

設(shè)漲價4x元,則銷量為(500﹣40x),利潤為(10+4x),再由每月賺8000元,可得方程,解方程即可.

解:設(shè)漲價4x元,則銷量為(500﹣40x),利潤為(10+4x),

由題意得,(500﹣40x×10+4x=8000,

整理得,5000+2000x﹣400x﹣160x2=8000,

解得:x1=,x2=,

當(dāng)x1=時,則漲價10元,銷量為:400件;

當(dāng)x2=時,則漲價30元,銷量為:200件.

答:當(dāng)售價定為60元時,每月應(yīng)進400件襯衫;售價定為80元時,每月應(yīng)進200件襯衫.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某鋼鐵企業(yè)為了適應(yīng)市場競爭的需要,提高生產(chǎn)效率,決定將一部分鋼鐵生產(chǎn)一線員工調(diào)整去從事服務(wù)工作,該企業(yè)有鋼鐵生產(chǎn)一線員工1000人,平均每人可創(chuàng)造年產(chǎn)值30萬元,根據(jù)規(guī)劃,調(diào)整出去的一部分一線員工后,余下的生產(chǎn)一線員工平均每人全年創(chuàng)造年產(chǎn)值可增加30%,調(diào)整到服務(wù)性工作崗位人員平均每人全年可創(chuàng)造產(chǎn)值24萬元,如果要保證員工崗位調(diào)整后,現(xiàn)在全年總產(chǎn)值至少增加20%,且鋼鐵產(chǎn)品的產(chǎn)值不能超過33150萬元,怎樣安排調(diào)整到服務(wù)行業(yè)的人數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加強中小學(xué)生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識競賽,為獎勵在競賽中表現(xiàn)優(yōu)異的班級,學(xué)校準備從體育用品商場一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),購買1個足球和1個籃球共需159元;足球單價是籃球單價的2倍少9元.

(1)求足球和籃球的單價各是多少元;

(2)根據(jù)學(xué)校實際情況,需一次性購買足球和籃球共20個,但要求購買足球和籃球的總費用不超過1550元,學(xué)校最多可以購買多少個足球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠B40°ABC的外角∠DAC和∠ACF的平分線交于點E,求∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一塊四邊形綠地的示意圖,其中AB長為24米,BC長15米,CD長為20米,DA長7米,C=90°,求綠地ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,⊙O的直徑AB10cm,弦AC6cm,∠ACB的平分線交⊙OD,求BC,AD,BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線MN與直線PQ垂直相交于O,點A在直線PQ上運動,點B在直線MN上運動.

(1)如圖1,已知AE、BE分別是∠BAO和∠ABO角的平分線,點A、B在運動的過程中,∠AEB的大小是否會發(fā)生變化?若發(fā)生變化,請說明變化的情況;若不發(fā)生變化,試求出∠AEB的大。

(2)如圖2,已知AB不平行CD,AD、BC分別是∠BAP和∠ABM的角平分線,又DE、CE分別是∠ADC和∠BCD的角平分線,點A、B在運動的過程中,∠CED的大小是否會發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出其值.

(3)如圖3,延長BAG,已知∠BAO、OAG的角平分線與∠BOQ的角平分線及延長線相交于EF,在AEF中,如果有一個角是另一個角的3倍,試求∠ABO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOB=30,M、N分別是射線OBOA上的動點,P為∠AOB內(nèi)一點,OP8,PMN的周長的最小值=___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在ABC中,AB=AC,BAC=120°,AC的垂直平分線EF交AC于點E,交BC于點F.試探索BF與CF的數(shù)量關(guān)系,寫出你的結(jié)論并證明.

查看答案和解析>>

同步練習(xí)冊答案