【題目】如圖①,中,,點(diǎn)從點(diǎn)出發(fā)沿方向勻速運(yùn)動,速度為1點(diǎn)上位于點(diǎn)右側(cè)的動點(diǎn),點(diǎn)上的動點(diǎn),在運(yùn)動過程中始終保持,cm.過,當(dāng)點(diǎn)與點(diǎn)重合時點(diǎn)停止運(yùn)動.設(shè)的而積為,點(diǎn)的運(yùn)動時問為的函數(shù)關(guān)系如圖②所示:

1=_______,=_______;

2)設(shè)四邊形的面積為,求的最大值;

3)是否存在的值,使得以,,為頂點(diǎn)的三角形與相似?如果存在,求的值;如果不存在,說明理由.

【答案】16,12;(2時,有最大值16.(3

【解析】

(1)當(dāng)t=4時,點(diǎn)EC重合,此時AD=4AC=AD+DE=4+2=6,故可求得AC=6;

由圖分析當(dāng)t=0時,S=2.設(shè)MAC的距離為h,所以DEh=2,所以h=2.易求得tanA=2,再在Rt中,解直角三角形可以求出AC的長.

(2) 四邊形的面積等于三角形MDE和三角形MNE的和,用含有t的式子表示出四邊形MDEN的面積,再求最值;

3)兩個三角形中已有,如若再找到一對角相等,兩三角形相似,故需分情況進(jìn)行討論:當(dāng)時,兩三角形相似.

解:(1)由圖可知:當(dāng)t=4時,點(diǎn)EC重合,此時AD=4,AC=AD+DE=4+2=6,故可求得AC=6;

當(dāng)t=0時,S=2.設(shè)MAC的距離為h,所以DEh=2,所以h=2.

tanA==2.

Rt中,tanA==2.

BC=2AC=12.

2)作于點(diǎn)

,,∴,∴,

,

,

,,∴

又∴,

,

∴四邊形是矩形,

,

根據(jù)題意,,

時,有最大值16

3)假設(shè)存在的值,使得以,,為頂點(diǎn)的三角形與相似.

,∴

①當(dāng)時,,∴,∴,

②當(dāng)時,,此時

,∴,∴

,(舍去)

時,以,,為頂點(diǎn)的三角形與相似.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)在正是草莓熱銷的季節(jié),某水果零售商店分兩批次從批發(fā)市場共購進(jìn)草莓40箱,已知第一、二次進(jìn)貨價分別為每箱50元、40元,且第二次比第一次多付款700元.

(1)設(shè)第一、二次購進(jìn)草莓的箱數(shù)分別為a箱、b箱,求a,b的值;

(2)若商店對這40箱草莓先按每箱60元銷售了x箱,其余的按每箱35元全部售完.

①求商店銷售完全部草莓所獲利潤y(元)與x(箱)之間的函數(shù)關(guān)系式;

②當(dāng)x的值至少為多少時,商店才不會虧本.(注:按整箱出售,利潤=銷售總收入-進(jìn)貨總成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,平行四邊形OABC的頂點(diǎn)Ax軸上,OC=4,∠AOC=60°,且以點(diǎn)O為圓心,任意長為半徑畫弧,分別交OA、OC于點(diǎn)DE;再分別以點(diǎn)D、點(diǎn)E為圓心,大于DE的長度為半徑畫弧,兩弧相交于點(diǎn)F,過點(diǎn)O作射線OF,交BC于點(diǎn)P.則點(diǎn)P的坐標(biāo)為( )

A.(4,2)B.(6,2)C.(24)D.(2,6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“新冠肺炎防控知識宣傳活動中,某社區(qū)對居民掌握新冠肺炎防控知識的情況進(jìn)行調(diào)查.其中、兩區(qū)分別有500名居民,社區(qū)從中各隨機(jī)抽取50名居民進(jìn)行相關(guān)知識測試,并將成績進(jìn)行整理得到部分信息:

(信息一)小區(qū)50名居民成績的頻數(shù)直方圖如圖(每一組含前一個邊界值,不含后一個邊界值);

(信息二)圖中,小區(qū)從左往右第四組的成績?nèi)缦?/span>

75

75

79

79

79

79

80

80

81

82

82

83

83

84

84

84

(信息三)、兩小區(qū)各50名居民成績的平均數(shù)、中位數(shù)、眾數(shù)、優(yōu)秀率(80分及以上為優(yōu)秀)、方差等數(shù)據(jù)如下(部分空缺):

小區(qū)

平均數(shù)

中位數(shù)

眾數(shù)

優(yōu)秀率

方差

751

79

277

751

77

76

211

根據(jù)以上信息,回答下列問題:

1)求小區(qū)50名居民成績的中位數(shù);

2)請估計小區(qū)500名居民中能超過平均數(shù)的有多少人?

3)請盡量從多個角度比較、分析,兩小區(qū)居民掌握新冠防控知識的情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一艘輪船在處測得燈塔在船的南偏東60°方向,輪船繼續(xù)向正東航行30海里后到達(dá)處,這時測得燈塔在船的南偏西75°方向,則燈塔離觀測點(diǎn)、的距離分別是(

A.海里、15海里B.海里、15海里

C.海里、海里D.海里、海里

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣為落實(shí)“精準(zhǔn)扶貧惠民政策”,計劃將某村的居民自來水管道進(jìn)行改造.該工程若由甲隊單獨(dú)施工恰好在規(guī)定時間內(nèi)完成;若乙隊單獨(dú)施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的15倍.如果由甲、乙隊先合作施工15天,那么余下的工程由甲隊單獨(dú)完成還需5天.

(1)這項工程的規(guī)定時間是多少天?

(2)為了縮短工期以減少對居民用水的影響,工程指揮部最終決定該工程由甲、乙兩隊合作完成.則甲、乙兩隊合作完成該工程需要多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀對學(xué)生的成長有著深遠(yuǎn)的影響.某中學(xué)為了解學(xué)生每周課余閱讀的時間,在本校隨機(jī)抽取若干名學(xué)生進(jìn)行調(diào)查,并依據(jù)調(diào)查結(jié)果經(jīng)制了以下不完整的統(tǒng)計圖表.

組別

時間(小時)

頻數(shù)(人數(shù))

頻率

A

6

B

C

10

D

8

E

4

合計

1

請根據(jù)圖表中的信息,解答下列問題:

1)表中的 ,將頻數(shù)分布直方圖補(bǔ)全;

2)估計該校2000名學(xué)生中,每周課余閱讀時間不足1小時的學(xué)生大約有多少名?

3組的4人中,有1名男生和3名女生,該校計劃在組學(xué)生中隨機(jī)選出兩人向全校同學(xué)作讀書心得報告,求抽取的兩名學(xué)生剛好是1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線Gy1ax+12+2Hy2=﹣(x221交于點(diǎn)B(1,﹣2),且分別與y軸交于點(diǎn)D、E.過點(diǎn)Bx軸的平行線,交拋物線于點(diǎn)A、C,則以下結(jié)論:①無論x取何值,y2總是負(fù)數(shù);②拋物線H可由拋物線G向右平移3個單位,再向下平移3個單位得到;③當(dāng)﹣3x1時,隨著x的增大,y1y2的值先增大后減小;④四邊形AECD為正方形.其中正確的是( 。

A.①③④B.①②④C.②③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△OAB中,∠AOB90°,AO2,BO4.將△OAB繞頂點(diǎn)O按順時針方向旋轉(zhuǎn)到△OA1B1處,此時線段OB1AB的交點(diǎn)D恰好為線段AB的中點(diǎn),線段A1B1OA交于點(diǎn)E,則圖中陰影部分的面積__

查看答案和解析>>

同步練習(xí)冊答案