【題目】如圖,在等腰直角三角形ABC中,∠C=90 o,AC=BC=4,點(diǎn)D是AB的中點(diǎn),E.F在射線(xiàn)AC與射線(xiàn)CB上運(yùn)動(dòng),且滿(mǎn)足AE=CF;當(dāng)點(diǎn)E運(yùn)動(dòng)到與點(diǎn)C的距離為1時(shí),則△DEF的面積為___________.
【答案】或
【解析】解:①E在線(xiàn)段AC上.在△ADE和△CDF中,∵AD=CD,∠A=∠DCF,AE=CF,∴△ADE≌△CDF(SAS),∴同理△CDE≌△BDF,∴四邊形CEDF面積是△ABC面積的一半.∵CE=1,∴CF=4﹣1=3,∴△CEF的面積=CECF=,∴△DEF的面積=××﹣=.
②E'在AC延長(zhǎng)線(xiàn)上.∵AE'=CF',AC=BC=4,∠ACB=90°,∴CE'=BF',∠ACD=∠CBD=45°,CD=AD=BD=,∴∠DCE'=∠DBF'=135°.在△CDE'和△BDF'中,∵CD=BD,∠DCE′=DBF′,CE′=BF′,∴△CDE'≌△BDF'(SAS),∴DE'=DF',∠CDE'=∠BDF'.∵∠CDE'+∠BDE'=90°,∴∠BDE'+∠BDF'=90°,即∠E'DF'=90°.∵DE'2=CE'2+CD2﹣2CDCE'cos135°=1+8+2××=13,∴S△E'DF'=DE'2=.故答案為: 或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AB=2 cm,AD=4cm,AC⊥BC,則△DBC比△ABC的周長(zhǎng)長(zhǎng)cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB、CD、EF相交于點(diǎn)O,EF⊥AB,OG為∠COF的平分線(xiàn),OH為∠DOG的平分線(xiàn).
(1)若∠AOC∶∠COG=4∶7,求∠DOF的大;
(2)若∠AOC∶∠DOH=8∶29,求∠COH的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)要證明命題“平行四邊形的對(duì)邊相等.”是正確的,他畫(huà)出了圖形,并寫(xiě)出了如下已知和不完整的求證.
已知:如圖,四邊形ABCD是平行四邊形.
求證:AB=CD,
(1)補(bǔ)全求證部分;
(2)請(qǐng)你寫(xiě)出證明過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】利用數(shù)軸解決問(wèn)題:我們知道,若數(shù)軸上點(diǎn)表示的數(shù)是,點(diǎn)表示的數(shù)是,則、兩點(diǎn)間的距離記作,.
(1)若,,則= ;
(2)若數(shù)軸上一點(diǎn)表示的數(shù)是,,則= ;
(3)若點(diǎn)表示的數(shù)是,已知,點(diǎn)在的左邊,,點(diǎn)在點(diǎn)的右邊,,點(diǎn)以每秒的速度向右移動(dòng),同時(shí)點(diǎn)、點(diǎn)分別以每秒、的速度向左移動(dòng).設(shè)移動(dòng)時(shí)間為秒,那么是否有最小值?若有,求出最小值并寫(xiě)出此時(shí)的取值范圍;若沒(méi)有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=48°,三角形的外角∠DAC和∠ACF的平分線(xiàn)交于點(diǎn)E,∠AEC等于( )
A.56° B.66° C.76° D.無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=﹣x2+bx+c經(jīng)過(guò)A(﹣1,0),B(3,0)兩點(diǎn),且與y軸交于點(diǎn)C,點(diǎn)D是拋物線(xiàn)的頂點(diǎn),拋物線(xiàn)的對(duì)稱(chēng)軸DE交x軸于點(diǎn)E,連接BD.
(1)求經(jīng)過(guò)A,B,C三點(diǎn)的拋物線(xiàn)的函數(shù)表達(dá)式;
(2)點(diǎn)P是線(xiàn)段BD上一點(diǎn),當(dāng)PE=PC時(shí),求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,過(guò)點(diǎn)P作PF⊥x軸于點(diǎn)F,G為拋物線(xiàn)上一動(dòng)點(diǎn),M為x軸上一動(dòng)點(diǎn),N為直線(xiàn)PF上一動(dòng)點(diǎn),當(dāng)以F、M、G為頂點(diǎn)的四邊形是正方形時(shí),請(qǐng)求出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一垂直于地面的燈柱AB被一鋼筋CD固定,CD與地面成45°夾角(∠CDB=45°),在C點(diǎn)上方2米處加固另一條鋼線(xiàn)ED,ED與地面成53°夾角(∠EDB=53°),那么鋼線(xiàn)ED的長(zhǎng)度約為多少米?(結(jié)果精確到1米,參考數(shù)據(jù):sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,能判斷AB∥CE的條件是( )
A. ∠A=∠ACE B. ∠A=∠ECD C. ∠B=∠BCA D. ∠B=∠ACE
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com