【題目】如圖,在四邊形ABCD中,AD∥BC,且AD<BC,△ABC平移到△DEF的位置.
(1)指出平移的方向和平移的距離;
(2)求證:AD+BC=BF.
【答案】
(1)解:平移的方向是點A到點D的方向,平移的距離是線段AD的長度.
(2)證明:∵△ABC平移到△DEF的位置,∴CF=AD.∵CF+BC=BF,∴AD+BC=BF.
【解析】(1)根據(jù)已知條件△ABC平移到△DEF的位置,可得出平移的方向和平移的距離。
(2)根據(jù)平移的性質(zhì)可得出CF=AD,再根據(jù)CF+BC=BF,即可證得AD+BC=BF。
【考點精析】解答此題的關(guān)鍵在于理解圖形的平移的相關(guān)知識,掌握對應(yīng)線段,對應(yīng)點所連線段平行(或在同一直線上)且相等;對應(yīng)角相等;平移方向和距離是它的兩要素,以及對平移的性質(zhì)的理解,了解①經(jīng)過平移之后的圖形與原來的圖形的對應(yīng)線段平行(或在同一直線上)且相等,對應(yīng)角相等,圖形的形狀與大小都沒有發(fā)生變化;②經(jīng)過平移后,對應(yīng)點所連的線段平行(或在同一直線上)且相等.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中國航空母艦“遼寧號”的滿載排水量為67500噸.將數(shù)67500用科學(xué)記數(shù)法表示為( )
A.0.675×105
B.6.75×104
C.67.5×103
D.675×102
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,分別以點A和點B為圓心,大于 AB的長為半徑畫弧,兩弧相交于點M,N,作直線MN,交BC于點D,連接AD.若△ADC的周長為10,AB=7,則△ABC的周長為( )
A.7
B.14
C.17
D.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,二次函數(shù)y=-2x2+4x+m的圖象與x軸的一個交點為A(3,0),另一個交點為B,且與y軸交于點C.
(1)求m的值及點B的坐標;
(2)求△ABC的面積;
(3)該二次函數(shù)圖象上有一點D(x,y),使S△ABD=S△ABC,請求出D點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個單位位于一條封閉式街道的兩旁,分別用點M,N表示,現(xiàn)準備修建一座過街天橋,橋建在何處時才能使點M到點N的路線最短?請說明理由.(注意:橋必須和街道垂直)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將正n邊形繞點A順時針旋轉(zhuǎn)60°后,發(fā)現(xiàn)旋轉(zhuǎn)前后兩圖形有另一交點O,連接AO,我們稱AO為“疊弦”;再將“疊弦”AO所在的直線繞點A逆時針旋轉(zhuǎn)60°后,交旋轉(zhuǎn)前的圖形于點P,連接PO,我們稱∠OAB為“疊弦角”,△AOP為“疊弦三角形”.
【探究證明】
⑴請在圖1和圖2中選擇其中一個證明:“疊弦三角形”(△AOP)是等邊三角形;
⑵如圖2,求證:∠OAB=∠OAE′.
圖1(n=4) 圖2(n=5) 圖3(n=6) 圖n
【歸納猜想】
⑶圖1、圖2中的“疊弦角”的度數(shù)分別為_____________,_________;
⑷圖n中,“疊弦三角形”_____________等邊三角形(填“是”或“不是”)
⑸圖n中,“疊弦角”的度數(shù)為______________________(用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=4,BC=6,∠B=60°,將△ABC沿著射線BC 的方向平移 2 個單位后,得到△△A′B′C′,連接 A′C,則△A′B′C 的周長為__________ .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com