如圖,小明的父親在相距2米的兩棵樹間拴了一根繩子,給小明做了一個簡易的秋千.拴繩子的地方距地面高都是2.5米,繩子自然下垂呈拋物線狀,身高1米的小明距較近的那棵樹0.5米時,頭部剛好接觸到繩子,
(1)選取合適的點作為原點,建立直角坐標(biāo)系,求出拋物線的解析式;
(2)求繩子的最低點距地面的距離.
(1)按要求建立直角坐標(biāo)系.
設(shè)拋物線的函數(shù)關(guān)系式為:y=ax2+c.
將(-0.5,1)、(1,2.5)代入y=ax2+c得:
(-0.5)2a+c=1
12a+c=2.5
,
a=2
c=
1
2

∴繩子所在拋物線的函數(shù)關(guān)系式為:y=2x2+0.5.

(2)∵當(dāng)x=0時,y=2x2+0.5=0.5,
∴繩子的最低點離地面的距離為0.5米.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知拋物線y=-
5
4
x2+bx+c經(jīng)過點A(0,1)、B(3,
5
2
)兩點,BC⊥x軸,垂足為C.點P是線段AB上的一動點(不與A,B重合),過點P作x軸的垂線交拋物線于點M,設(shè)點P的橫坐標(biāo)為t.
(1)求此拋物線的函數(shù)表達(dá)式;
(2)連結(jié)AM、BM,設(shè)△AMB的面積為S,求S關(guān)于t的函數(shù)關(guān)系式,并求出S的最大值;
(3)連結(jié)PC,當(dāng)t為何值時,四邊形PMBC是菱形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=4.現(xiàn)以O(shè)為坐標(biāo)原點,OA所在直線為x軸,建立如圖所示的平面直角坐標(biāo)系,點B在第一象限內(nèi).將Rt△OAB沿OB折疊后,點A落在第一象限內(nèi)的點C處.
(1)求點C的坐標(biāo);
(2)若拋物線y=ax2+bx(a≠0)經(jīng)過C、A兩點,求此拋物線的解析式;
(3)若⊙P的半徑為R,圓心P在(2)的拋物線上運動,問:是否存在這樣的點P,使得⊙P與兩坐標(biāo)軸都相切?若存在,請求出此時⊙P半徑R的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知直線y=-
1
2
x與拋物線y=-
1
4
x2+6交于A,B兩點.
(1)求A,B兩點的坐標(biāo);
(2)求線段AB的垂直平分線的解析式;
(3)如圖2,取與線段AB等長的一根橡皮筋,端點分別固定在A,B兩處.用鉛筆拉著這根橡皮筋使筆尖P在直線AB上方的拋物線上移動,動點P將與A,B構(gòu)成無數(shù)個三角形,這些三角形中是否存在一個面積最大的三角形?如果存在,求出最大面積,并指出此時P點的坐標(biāo);如果不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知拋物線y=ax2-2ax+b經(jīng)過梯形OABC的四個頂點,若BC=10,梯形OABC的面積為18.
(1)求拋物線解析式;
(2)將圖1中梯形OABC的上下底邊所在的直線OA、CB以相同的速度同時向上平移,平移后的兩條直線分別交拋物線于點O1、A1、C1、B1,得到如圖2的梯形O1A1B1C1.設(shè)梯形O1A1B1C1的面積為S,A1、B1的坐標(biāo)分別為(x1,y1)、(x2,y2).用含S的代數(shù)式表示x2-x1,并求出當(dāng)S=36時點A1的坐標(biāo);
(3)如圖3,設(shè)圖1中點D坐標(biāo)為(1,3),M為拋物線的頂點,動點P從點B出發(fā),以每秒1個單位長度的速度沿著線段BC運動,動點Q從點D出發(fā),以與點P相同的速度沿著線段DM運動.P、Q兩點同時出發(fā),當(dāng)點Q到達(dá)點M時,P、Q兩點同時停止運動.設(shè)P、Q兩點的運動時間為t,是否存在某一時刻t,使得直線PQ、直線AB、x軸圍成的三角形與直線PQ、直線AB、拋物線的對稱軸圍成的三角形相似?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-2,0)、B(0,1)兩點,且對稱軸是y軸.經(jīng)過點C(0,2)的直線l與x軸平行,O為坐標(biāo)原點,P、Q為拋物線y=ax2+bx+c(a≠0)上的兩動點.
(1)求拋物線的解析式;
(2)以點P為圓心,PO為半徑的圓記為⊙P,判斷直線l與⊙P的位置關(guān)系,并證明你的結(jié)論;
(3)設(shè)線段PQ=9,G是PQ的中點,求點G到直線l距離的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,某小區(qū)要修建一塊矩形綠地,設(shè)矩形的長為x米,寬為y米,且x>y.
(1)如果用18米的建筑材料來修建綠地的邊框(即周長),求y與x的函數(shù)關(guān)系式,并求出x的取值范圍;
(2)現(xiàn)根據(jù)小區(qū)的規(guī)劃要求,所修建的矩形綠地面積必須是18平方米,在滿足(1)的條件下,問矩形的長和寬各為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD中,AB=8,BC=10,點P在矩形的邊DC上由D向C運動.沿直線AP翻折△ADP,形成如下四種情形.設(shè)DP=x,△ADP和矩形重疊部分(陰影)的面積為y.

(1)如圖丁,當(dāng)點P運動到與C重合時,求重疊部分的面積y;
(2)如圖乙,當(dāng)點P運動到何處時,翻折△ADP后,點D恰好落在BC邊上這時重疊部分的面積y等于多少?
(3)閱讀材料:已知銳角α≠45°,tan2α是角2α的正切值,它可以用角α的正切值tanα來表示,即tan2α=
2tanα
1-(tanα)2
(α≠45°).根據(jù)上述閱讀材料,求出用x表示y的解析式,并指出x的取值范圍.
(提示:在圖丙中可設(shè)∠DAP=a)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某建筑物的窗戶如圖所示,它的上半部是半圓,下半部是矩形,制造窗框的材料總長(圖中所有黑線的長度和)為10米.當(dāng)x等于多少米時,窗戶的透光面積最大,最大面積是多少?

查看答案和解析>>

同步練習(xí)冊答案