【題目】下面是小東設(shè)計的“作邊上的高線”的尺規(guī)作圖過程.

已知:.

求作:邊上的高線.

作法:如圖,

①以點(diǎn)為圓心,的長為半徑作弧,以點(diǎn)為圓心,的長為半徑作弧,兩弧在下方交于點(diǎn);

②連接于點(diǎn).

所以線段邊上的高線.

根據(jù)小東設(shè)計的尺規(guī)作圖過程,

(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

(2)完成下面的證明.

證明:∵  ,  ,

∴點(diǎn)分別在線段的垂直平分線上(  )(填推理的依據(jù)).

垂直平分線段.

∴線段邊上的高線.

【答案】(1)見解析;(2)見解析

【解析】

(1)利用幾何語言畫出對應(yīng)的幾何圖形;

(2)通過作圖得到AM=AN,MP=NP,則根據(jù)線段垂直平分線的性質(zhì)定理的逆定理可判斷AP是線段MN的垂直平分線,從而得到ADBC.

(1)正確補(bǔ)全圖形:

(2)證明:AM=AN,MP=NP,

AP是線段MN的垂直平分線(到一條線段兩個端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上)

ADBC于D,即線段AD為ABC的邊BC上的高.

故答案為AN,NP,到一條線段兩個端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①是一個長為2m.寬為2n的長方形,沿圖中虛線用剪刀均勻分成四塊小長方形,然后按圖②形狀拼成一個正方形.

1)你認(rèn)為圖②中的陰影部分的正方形的邊長等于________

2)請用兩種不同的方法求圖②中陰影部分的面積.(不用化簡)

方法1___________;方法2___________

3)由問題(2)你能寫出三個代數(shù)式:,,mn之間的一個等量關(guān)系.

答:______________

4)根據(jù)(3)題中的等量關(guān)系和完全平方公式,解決如下問題:

①已知:m+n5,mn=-3,求:(mn2的值;

②已知mn5,,求mn的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BO、CO分別平分∠ABC、ACB.若∠BOC=110°,則∠A=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD是⊙O的直徑,∠EOD=72°,AE交⊙O于點(diǎn)B,且AB=OC,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖示,若△ABC內(nèi)一點(diǎn)P滿足∠PAC=∠PBA=∠PCB,則點(diǎn)P為△ABC的布洛卡點(diǎn).三角形的布洛卡點(diǎn)(Brocard point)是法國數(shù)學(xué)家和數(shù)學(xué)教育家克洛爾(A.L.Crelle 1780﹣1855)于1816年首次發(fā)現(xiàn),但他的發(fā)現(xiàn)并未被當(dāng)時的人們所注意,1875年,布洛卡點(diǎn)被一個數(shù)學(xué)愛好者法國軍官布洛卡(Brocard 1845﹣1922)重新發(fā)現(xiàn),并用他的名字命名.問題:已知在等腰直角三角形DEF中,∠EDF=90°,若點(diǎn)Q為△DEF的布洛卡點(diǎn),DQ=1,則EQ+FQ=(
A.5
B.4
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn),在數(shù)軸上對應(yīng)的數(shù)為,則稱為點(diǎn)之間的距離,記作.已知數(shù)軸上兩點(diǎn),對應(yīng)的數(shù)分別為,且滿足,點(diǎn)為數(shù)軸上一動點(diǎn),其對應(yīng)的數(shù)為.

1)若點(diǎn)到點(diǎn)的距離相等,則點(diǎn)對應(yīng)的數(shù)是_________.

2)數(shù)軸上是否存在點(diǎn),使?若存在,請求出的值;若不存在,請說明理由.

3)當(dāng)點(diǎn)以每秒1個單位長度的速度從原點(diǎn)向左運(yùn)動時,點(diǎn)以每秒3個單位長度向左運(yùn)動,點(diǎn)以每秒15個單位長度向左運(yùn)動,若它們同時出發(fā),幾秒鐘后點(diǎn)到點(diǎn)的距離相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC.

(1)證明:BC=DE;

(2)若AC=12,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某開發(fā)公司生產(chǎn)的 960 件新產(chǎn)品需要精加工后,才能投放市場,現(xiàn)甲、乙兩個工廠都想加工這批產(chǎn)品,已知甲工廠單獨(dú)加工完成這批產(chǎn)品比乙工廠單獨(dú)加工完成這批產(chǎn)品多用 20 天,而甲工廠每天加工的數(shù)量是乙工廠每天加工的數(shù)量的,公司需付甲工廠加工費(fèi)用為每天 80 元,乙工廠加工費(fèi)用為每天 120 元.

1)甲、乙兩個工廠每天各能加工多少件新產(chǎn)品?

2)公司制定產(chǎn)品加工方案如下:可以由每個廠家單獨(dú)完成,也可以由兩個廠家合作完成.在加工過程中,公司派一名工程師每天到廠進(jìn)行技術(shù)指導(dǎo),并負(fù)擔(dān)每天 15 元的午餐補(bǔ)助費(fèi), 請你幫公司選擇一種既省時又省錢的加工方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中, A、B兩點(diǎn)分別在x軸、y軸的正半軸上,且OB = OA=3.(1)、求點(diǎn)AB的坐標(biāo);(2)、已知點(diǎn)C(-2,2),求△BOC的面積;(3)、點(diǎn)P是第一象限角平分線上一點(diǎn),若,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案