(本小題10分)如圖11,已知二次函數(shù)y= -x2 +mx +4m的圖象與x軸交于

A(x1,0),B(x2,0)兩點(diǎn)(B點(diǎn)在A點(diǎn)的右邊),與y軸的正半軸交于點(diǎn)C,且(x1+x2) - x1x2=10.

(1)求此二次函數(shù)的解析式.

(2)寫(xiě)出B,C兩點(diǎn)的坐標(biāo)及拋物線(xiàn)頂點(diǎn)M的坐標(biāo);

(3)連結(jié)BM,動(dòng)點(diǎn)P在線(xiàn)段BM上運(yùn)動(dòng)(不含端點(diǎn)B,M),過(guò)點(diǎn)P作x軸的垂線(xiàn),垂足為H,設(shè)OH的長(zhǎng)度為t,四邊形PCOH的面積為S.請(qǐng)?zhí)骄浚核倪呅蜳COH的面積S有無(wú)最大值?如果有,請(qǐng)求出這個(gè)最大值;如果沒(méi)有,請(qǐng)說(shuō)明理由.

 

【答案】

解:(1)由根與系數(shù)的關(guān)系,得

∵(x1+x2) -x1x2=10,

∴ m + 4m =10, m=2.

∴二次函數(shù)的解析式為y = -x2 +2x +8.

(2)由-x2 +2x +8=0,解得x1= -2,x2=4.

y = -x2 +2x +8= -(x-1)2+9.

∴B,C,M的坐標(biāo)分別為B(4,0),C(0,8),M(1,9).

(3)如圖,過(guò)M作MN⊥x軸于N,則ON=1,MN=9,OB=4,BN=3.

∵OH=t(1<t<4),∴BH=4-t.

由PH∥MN,可求得PH=3BH=3(4-t),

∴S=(PH+CO)·OH

=(12-3t+8)t

= -t2+10t(1<t<4).

S= -t2+10t= -(t-)2+.

∵1<<4.

∴當(dāng)t=時(shí),S有最大值,其最大值為.

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(11·湖州)(本小題10分)

如圖,已知E、F分別是□ABCD的邊BC、AD上的點(diǎn),且BE=DF。

⑴求證:四邊形AECF是平行四邊形;

⑵若BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長(zhǎng)。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(11·湖州)(本小題10分)
如圖,已知E、F分別是□ABCD的邊BC、AD上的點(diǎn),且BE=DF。
⑴求證:四邊形AECF是平行四邊形;
⑵若BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省啟東市九年級(jí)寒假作業(yè)檢測(cè)數(shù)學(xué)卷 題型:解答題

(本小題10分)

如圖,拋物線(xiàn)與x軸交與A(1,0),B(- 3,0)兩點(diǎn),

1.(1)求該拋物線(xiàn)的解析式;

2.(2)拋物線(xiàn)交y軸與C點(diǎn),在該拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在點(diǎn)Q,使得△QAC的周長(zhǎng)最?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆北京一六三中初三上學(xué)期模擬數(shù)學(xué)卷 題型:解答題

(本小題10分)如圖,      拋物線(xiàn)與x軸的一個(gè)交點(diǎn)是A,與y軸的交點(diǎn)是B,且OA、OB(OA<OB)的長(zhǎng)是方程的兩個(gè)實(shí)數(shù)根.

1.(1)求A、B兩點(diǎn)的坐標(biāo);

2. (2) 求出此拋物線(xiàn)的的解析式及頂點(diǎn)D的坐標(biāo);

3.(3)求出此拋物線(xiàn)與x軸的另一個(gè)交點(diǎn)C的坐標(biāo);

4.(4)在直線(xiàn)BC上是否存在一點(diǎn)P,使四邊形PDCO為梯形?若存在,求出P點(diǎn)坐標(biāo),若不存在,說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案