【題目】小紅的父母開了一個小服裝店,出售某種進價為元的服裝,現(xiàn)每件元,每星期可賣件.該同學(xué)對市場作了如下調(diào)查:每降價元,每星期可多賣件;每漲價元,每星期要少賣件.

小紅已經(jīng)求出在漲價情況下一個星期的利潤(元)與售價(元)(為整數(shù))的函數(shù)關(guān)系式為,請你求出在降價的情況下的函數(shù)關(guān)系式;

在降價的條件下,問每件商品的售價定為多少時,一個星期的利潤恰好為元?

問如何定價,才能使一星期獲得的利潤最大?

【答案】(1);(2)當每件商品的售價定為元時,一個星期的利潤恰好為每件商品的定價為元時,獲得利潤最大.

【解析】

(1)根據(jù)一個星期的利潤=每件的利潤×銷售數(shù)量列出函數(shù)解析式即可;(2)利用(1)中結(jié)果,列出方程,解方程即可解答;(3)分別求得兩種銷售方式獲取的最大利潤,比較即可解答.

(1)

(2)=6000,

解得x1=55x2=60(舍去).

答:當每件商品的售價定為55元時,一個星期的利潤恰好為6000

,

∴當時,有最大值為

時,有最大值為

∴當每件商品的定價為元時,獲得利潤最大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,是邊上一點,,,垂足分別是、,

求證:

,求證:四邊形是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為美化小區(qū)環(huán)境,某小區(qū)有一塊面積為30m2的等腰三角形草地,測得其一邊長為10m,現(xiàn)要給這塊三角形草地圍上白色的低矮柵欄,則其長度為 m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:若m22mn+2n28n+16=0,求m、n的值.

解:∵m22mn+2n28n+16=0,∴(mn2=0,(n42=0

∴(m22mn+n2+n28n+16=0n=4,m=4

∴(mn2+n42=0

根據(jù)你的觀察,探究下面的問題:

1)已知x22xy+2y2+6y+9=0,求xy的值;

2)已知ABC的三邊長a、b、c都是正整數(shù),且滿足a2+b210a12b+61=0,求ABC的最大邊c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC在方格紙中

(1)請在方格紙上建立平面直角坐標系,使A(2,3),C(6,2),并求出B點坐標;

(2)以原點O為位似中心,相似比為2,在第一象限內(nèi)將ABC放大,畫出放大后的圖形ABC;

(3)計算ABC的面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,設(shè)點P到原點O的距離為ρ,OPx軸正方向的夾角為α,則用[ρ,α]表示點P的極坐標,例如:點P的坐標為(1,1),則其極坐標為[,45°].若點Q的極坐標為[4,120°],則點Q的坐標為(  )

A. (-2,2) B. (2,-2) C. (-2,-2) D. (-4,-4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在函數(shù)y1=(x<0)和y2=(x>0)的圖象上,分別有A、B兩點,若ABx軸,交y軸于點C,且OAOB,SAOC=,SBOC=,則線段AB的長度=__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖的正方形網(wǎng)格中,每一個小正方形的邊長為1.格點三角形(頂點是網(wǎng)格線交點的三角形)的頂點的坐標分別是

(1)請在圖中的網(wǎng)格平面內(nèi)建立平面直角坐標系;

(2)請畫出關(guān)于軸對稱的;

(3)請在軸上求作一點,使的周長最小,并寫出點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC底邊BC的長為4,面積為12,腰AB的垂直平分線EFAB于點E,交AC于點F.DBC邊的中點,M為線段EF上一個動點,則BDM的周長的最小值為______

查看答案和解析>>

同步練習(xí)冊答案