精英家教網(wǎng)如圖,兩個(gè)反比例函數(shù)y=
k1
x
和y=
k2
x
(其中k1>0>k2)在第一象限內(nèi)的圖象是C1,第二、四象限內(nèi)的圖象是C2,設(shè)點(diǎn)P在C1上,PC⊥x軸于點(diǎn)M,交C2于點(diǎn)C,PA⊥y軸于點(diǎn)N,交C2于點(diǎn)A,AB∥PC,CB∥AP相交于點(diǎn)B,則四邊形ODBE的面積為( 。
A、|k1-k2|
B、
k1
|k2|
C、|k1•k2|
D、
k22
k1
分析:此題用面積的分割法根據(jù)等式:四邊形ODBE的面積=S矩形APCB-S矩形PNOM-S矩形MCDP-S矩形AEON作答即可.
解答:解:∵AB∥PC,CB∥AP,∠APC=90°,
∴四邊形APCB是矩形.
設(shè)P(x,
k1
x
),則A(
k2x
k1
,
k1
x
),C(x,
k2
x
),
∴S矩形APCB=AP•PC=(x-
k2x
k1
)(
k1
x
-
k2
x
)=
(k1-k2)2
k1
,
∴四邊形ODBE的面積=S矩形APCB-S矩形PNOM-S矩形MCDP-S矩形AEON=
(k1-k2)2
k1
-k1-|k2|-|k2|=
k22
k1

故選D.
點(diǎn)評(píng):本題主要考查了反比例函數(shù)y=
k
x
中k的幾何意義,即過(guò)雙曲線上任意一點(diǎn)引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)?疾榈囊粋(gè)知識(shí)點(diǎn);這里體現(xiàn)了數(shù)形結(jié)合的思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,兩個(gè)反比例函數(shù)y=
2
x
和y=
1
x
在第一象限的圖象如圖所示,當(dāng)P在y=
2
x
的圖象上,PC⊥x軸于點(diǎn)C,交y=
1
x
的圖象于點(diǎn)A,PD⊥y軸于點(diǎn)D,交y=
1
x
的圖象于點(diǎn)B,則四邊形PAOB的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•德州)如圖,兩個(gè)反比例函數(shù)y=
1
x
y=-
2
x
的圖象分別是l1和l2.設(shè)點(diǎn)P在l1上,PC⊥x軸,垂足為C,交l2于點(diǎn)A,PD⊥y軸,垂足為D,交l2于點(diǎn)B,則三角形PAB的面積為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,兩個(gè)反比例函數(shù)y=
1
x
和y=-
2
x
的圖象分別是l1和l2.設(shè)點(diǎn)P在l1上,PC⊥x軸,垂足為C,交l2于點(diǎn)A,PD⊥y軸,垂足為D,交l2于點(diǎn)B,則△PAB的面積為
9
2
9
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,兩個(gè)反比例函數(shù)y1=
1
x
y2=
2
x
在第一象限內(nèi)的圖象依次是C1和C2,設(shè)點(diǎn)p1在c2上,p1E1⊥x軸于點(diǎn)E1,p1D1⊥y軸與點(diǎn)D1,交C1于點(diǎn)A1交c1與點(diǎn)B1
(1)求出四邊形P1A1OB1的面積S1;
(2)若y3=
3
x
在第一象限的圖象是c3,p2是C3上的點(diǎn),P2E2⊥x軸于點(diǎn)E2,交C2于點(diǎn)A2,P2D2⊥y軸于點(diǎn)D2,交C2于點(diǎn)B2,則四邊形P2A2OB2的面積S2=
1
1

(3)按此類推,試猜想四邊形PnAnOBn的面積Sn=
1
1
,在所給坐標(biāo)系中畫出草圖,并驗(yàn)證你的猜想.

查看答案和解析>>

同步練習(xí)冊(cè)答案