【題目】如圖,是⊙的弦,交于點,過點的直線交的延長線于點,且是⊙的切線.
(1)判斷的形狀,并說明理由;
(2)若,求的長;
(3)設的面積是的面積是,且.若⊙的半徑為,求.
【答案】(1)是等腰三角形,理由見解析;(2)的長為;(3).
【解析】
(1)首先連接OB,根據(jù)等腰三角形的性質由OA=OB得,由點C在過點B的切線上,且,根據(jù)等角的余角相等,易證得∠PBC=∠CPB,即可證得△CBP是等腰三角形;
(2)設BC=x,則PC=x,在Rt△OBC中,根據(jù)勾股定理得到,然后解方程即可;
(3)作CD⊥BP于D,由等腰三角形三線合一的性質得,由,通過證得,得出 即可求得CD,然后解直角三角形即可求得.
(1)是等腰三角形,理由:
連接,
⊙與相切與點,
,即,
,
是等腰三角形
(2)設,則,
在中,,,
,
,
解得,
即的長為;
(3)解:作于,
,
,,
,
,
,
,
,
.
科目:初中數(shù)學 來源: 題型:
【題目】京劇臉譜是京劇藝術獨特的表現(xiàn)形式.京劇表演中,經常用臉譜象征人物的性格,品質,甚至角色和命運.如紅臉代表忠心耿直,黑臉代表強悍勇猛.現(xiàn)有三張不透明的卡片,其中兩張卡片的正面圖案為“紅臉”,另外一張卡片的正面圖案為“黑臉”,卡片除正面圖案不同外,其余均相同,將這三張卡片背面向上洗勻,從中隨機抽取一張,記錄圖案后放回,重新洗勻后再從中隨機抽取一張.
請用畫樹狀圖或列表的方法,求抽出的兩張卡片上的圖案都是“紅臉”的概率.(圖案為“紅臉”的兩張卡片分別記為A1、A2,圖案為“黑臉”的卡片記為B)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:平行四邊形ABCD的兩邊AB,AD的長是關于x的方程x2﹣mx+﹣=0的兩個實數(shù)根.
(1)m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;
(2)若AB的長為2,那么ABCD的周長是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AB=50,AC=30,D、E、F分別是AC、AB、BC的中點.點P從點D出發(fā)沿折線DE﹣EF﹣FC﹣CD以每秒7個單位長的速度勻速運動;點Q從點B出發(fā)沿BA方向以每秒4個單位長的速度勻速運動,過點Q作射線QK⊥AB,交折線BC﹣CA于點G.點P、Q同時出發(fā),當點P繞行一周回到點D時停止運動,點Q也隨之停止.設點P、Q運動的時間是t秒(t>0).
(1)當點P在DE上,若S△PBQ=,求t的值.
(2)當點P運動到折線EF﹣FC上,且點P又恰好落在射線QK上時,求t的值;
(3)連結PG,當PG∥AB時,請直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=8cm,BC=6cm. 點P從點A出發(fā),沿AB邊以2 cm/s的速度向點B勻速移動;點Q從點B出發(fā),沿BC邊以1 cm/s的速度向點C勻速移動, 當一個運動點到達終點時,另一個運動點也隨之停止運動,設運動的時間為t(s).
(1)當PQ∥AC時,求t的值;
(2)當t為何值時,△PBQ的面積等于cm 2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題發(fā)現(xiàn):
(1)如圖1,內接于半徑為4的,若,則_______;
問題探究:
(2)如圖2,四邊形內接于半徑為6的,若,求四邊形的面積最大值;
解決問題
(3)如圖3,一塊空地由三條直路(線段、AB、)和一條弧形道路圍成,點是道路上的一個地鐵站口,已知千米,千米,,的半徑為1千米,市政府準備將這塊空地規(guī)劃為一個公園,主入口在點處,另外三個入口分別在點、、處,其中點在上,并在公園中修四條慢跑道,即圖中的線段、、、,是否存在一種規(guī)劃方案,使得四條慢跑道總長度(即四邊形的周長)最大?若存在,求其最大值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=﹣x+b與反比例函數(shù)y=的圖形交于A(a,4)和B(4,1)兩點
(1)求b,k的值;
(2)若點C(x,y)也在反比例函數(shù)y=(x>0)的圖象上,求當2≤x≤6時,函數(shù)值y的取值范圍;
(3)將直線y=﹣x+b向下平移m個單位,當直線與雙曲線沒有交點時,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形網格圖中建立平面直角坐標系,一條圓弧經過網格點A(0,4)、B(-4,4)、C(-6,2),請在網格圖中進行如下操作:
(1)利用網格圖確定該圓弧所在圓的圓心D的位置(保留畫圖痕跡);
(2)連接AD、CD,則⊙D的半徑為_ __(結果保留根號),∠ADC的度數(shù)為_ __;
(3)若扇形DAC是一個圓錐的側面展開圖,求該圓錐底面半徑.(結果保留根號).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com