【題目】反比例函數(shù)和一次函數(shù)y=k2x+b的圖象交于點M(3,﹣)和點N(﹣1,2),則k1=_____,k2=____,一次函數(shù)的圖象交x軸于點_____.
【答案】﹣2﹣(2,0)
【解析】
由兩函數(shù)的交點為M與N,將N的坐標(biāo)代入反比例函數(shù)中求出k1的值,將兩點坐標(biāo)代入一次函數(shù)解析式中,求出k2與b的值,確定出一次函數(shù)解析式,令y=0求出x的值,即為一次函數(shù)與x軸交點的橫坐標(biāo),即可確定出一次函數(shù)與x軸的交點坐標(biāo).
∵M(3,)和點N(1,2)為兩函數(shù)的交點,
∴x=1,y=2代入反比例函數(shù)y=中得:2=,即k1=2;
將兩點坐標(biāo)代入y=k2x+b得:,
解得:k1=,b=,
∴一次函數(shù)解析式為y=x+,
令y=0,解得:x=2,
∴一次函數(shù)與x軸交點為(2,0).
故答案為:2;;(2,0)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,先描出點,點.
(1)描出點關(guān)于軸的對稱點的位置,寫出的坐標(biāo) ;
(2)用尺規(guī)在軸上找一點,使的值最小(保留作圖痕跡);
(3)用尺規(guī)在軸上找一點,使(保留作圖痕跡).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BC是⊙O的直徑,點A在⊙O上,AD⊥BC,垂足為D,弧AB=弧AE,BE分別交AD,AC于點F,G.
(1)求證:FA=FG;
(2)若BD=DO=2,求弧EC的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°, 點D在AB上,且CD=BD.
(1)求證:點D是AB的中點.
(2)以CD為對稱軸將△ACD翻折至△A'CD,連接BA',若∠DBC=a,求∠CB A'的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為5的正方形ABCD中,以A為一個頂點,另外兩個頂點在正方形ABCD的邊上,且含邊長為3的所有大小不同的等腰三角形的個數(shù)為( )
A.3B.4C.5D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點P為AC邊上的一點,延長BP至點D,使得AD=AP,當(dāng)AD⊥AB時,過點D作DE⊥AC于E.
(1)求證:∠CBP=∠ABP;
(2)若AB-BC=4,AC=8.求AB的長度和DE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個二次函數(shù)滿足以下條件:
①函數(shù)圖象與x軸的交點坐標(biāo)分別為A(1,0),B(x2,y2)(點B在點A的右側(cè));
②對稱軸是x=3;
③該函數(shù)有最小值是﹣2.
(1)請根據(jù)以上信息求出二次函數(shù)表達(dá)式;
(2)將該函數(shù)圖象x>x2的部分圖象向下翻折與原圖象未翻折的部分組成圖象“G”,平行于x軸的直線與圖象“G”相交于點C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),結(jié)合畫出的函數(shù)圖象求x3+x4+x5的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.在△ABC中,∠ACB=60°,AC=1,D是邊AB的中點,E是邊BC上一點.若DE平分△ABC的周長,則DE的長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△AOB的頂點O在直線上,且AO=AB.
(1)畫出△AOB關(guān)于直線成軸對稱的圖形△COD,且使點A的對稱點為點C;
(2)在(1)畫出的圖形中,AC與BD的位置關(guān)系是 ;
(3)在(1)畫出的圖形中連接AD,如果∠ABD=2∠ADB.
求證:△AOC是等邊三角形,并直接寫出∠DAO∶∠DAB的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com