【題目】如圖,鈍角三角形△ABC的面積是15,最長邊AB=10,BD平分∠ABC,點(diǎn)M,N分別是BD,BC上的動(dòng)點(diǎn),則CM+MN的最小值為_____
【答案】3
【解析】
過點(diǎn)C作CE⊥AB于點(diǎn)E,交BD于點(diǎn)M,過點(diǎn)M作MN⊥BC于N,則CE即為CM+MN的最小值,再根據(jù)三角形的面積公式求出CE的長,即為CM+MN的最小值.
過點(diǎn)C作CE⊥AB于點(diǎn)E,交BD于點(diǎn)M,過點(diǎn)M作MN⊥BC于N,
∵BD平分∠ABC,ME⊥AB于點(diǎn)E,MN⊥BC于N,
∴MN=ME,
∴CE=CM+ME=CM+MN,
根據(jù)垂線段最短可知,CE的長即為CM+MN的最小值,
∵三角形ABC的面積為15,AB=10,
∴×10CE=15,
∴CE=3.
即CM+MN的最小值為3.
故答案為3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:P、Q分別是兩條線段a和b上任意一點(diǎn),線段PQ的長度的最小值叫做線段a與線段b的距離. 已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐標(biāo)系中四點(diǎn).
(1)根據(jù)上述定義,當(dāng)m=2,n=2時(shí),如圖1,線段BC與線段OA的距離是;當(dāng)m=5,n=2時(shí),如圖2,線段BC與線段OA的距離為;
(2)如圖3,若點(diǎn)B落在圓心為A,半徑為2的圓上,線段BC與線段OA的距離記為d,求d關(guān)于m的函數(shù)解析式.
(3)當(dāng)m的值變化時(shí),動(dòng)線段BC與線段OA的距離始終為2,線段BC的中點(diǎn)為M, ①求出點(diǎn)M隨線段BC運(yùn)動(dòng)所圍成的封閉圖形的周長;
②點(diǎn)D的坐標(biāo)為(0,2),m≥0,n≥0,作MH⊥x軸,垂足為H,是否存在m的值使以A、M、H為頂點(diǎn)的三角形與△AOD相似?若存在,求出m的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,數(shù)軸上點(diǎn)A對(duì)應(yīng)的有理數(shù)為10,點(diǎn)P以每秒1個(gè)單位長度的速度從點(diǎn)A出發(fā),點(diǎn)Q以每秒3個(gè)單位長度的速度從原點(diǎn)O出發(fā),且P、Q兩點(diǎn)同時(shí)向數(shù)軸正方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=2時(shí),P,Q兩點(diǎn)對(duì)應(yīng)的有理數(shù)分別是 , ,PQ= ;
(2)當(dāng)PQ=8時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠A=30°,∠B=60°。
(1)作∠B的平分線BD,交AC于點(diǎn)D;作AB的中點(diǎn)E(要求:尺規(guī)作圖,保留作圖痕跡)
(2)連接DE,求證:△ADE≌△BDE。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將直角三角形ABC繞其直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)至△A′B′C′,已知AC=8,BC=6,點(diǎn)M,M′分別是AB,A′B′的中點(diǎn),則MM′的長是( )
A. 5 B. 4 C. 3 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在矩形ABCD中,E是BC上一點(diǎn),AF⊥DE于點(diǎn)F.
(1)求證:DFCD=AFCE.
(2)若AF=4DF,CD=12,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)下面是李老師帶領(lǐng)同學(xué)們探索的近似值的過程,請(qǐng)你仔細(xì)閱讀并補(bǔ)充完整:我們知道,面積是2的正方形的邊長是,且>1,則設(shè)=1+x(0<x<1),可畫出如圖所示的示意圖.由各部分面積之和等于總面積.可列方程為:x2+ +1=2,∵0<x<1,∴認(rèn)為x2是個(gè)較為接近于0的數(shù),令x2≈0,因此省略x2后,得到方程: ,解得,x= ,即=1+x≈ .
(2)請(qǐng)仿照(1)中的方法,若設(shè)=1.7+y(0<y<1),求的近似值(要求畫出示意圖,標(biāo)明數(shù)據(jù),并將的近似值精確到千分位)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系xOy中的線段AB及點(diǎn)P,給出如下定義:
若點(diǎn)P滿足PA=PB,則稱P為線段AB的“軸點(diǎn)”,其中,當(dāng)0°<∠APB<60°時(shí),稱P為線段AB的“遠(yuǎn)軸點(diǎn)”;當(dāng)60°≤∠APB≤180°時(shí),稱P為線段AB的“近軸點(diǎn)”.
(1)如圖1,點(diǎn)A,B的坐標(biāo)分別為(-2,0),(2,0),則在,,, 中,線段AB的“近軸點(diǎn)”是 .
(2)如圖2,點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)B在y軸正半軸上,且∠OAB=30°.
①若P為線段AB的“遠(yuǎn)軸點(diǎn)”,直接寫出點(diǎn)P的橫坐標(biāo)t的取值范圍 ;
②點(diǎn)C為y軸上的動(dòng)點(diǎn)(不與點(diǎn)B重合且BC≠AB),若Q為線段AB的“軸點(diǎn)”,當(dāng)線段QB與QC的和最小時(shí),求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小紅根據(jù)學(xué)習(xí)“數(shù)與式”積累的經(jīng)驗(yàn),想通過“由特殊到一般”的方法探究下面二次根式的運(yùn)算規(guī)律.
下面是小紅的探究過程,請(qǐng)補(bǔ)充完整:
(1)具體運(yùn)算,發(fā)現(xiàn)規(guī)律.
特例1:,
特例2:,
特例3:,
特例4: (填寫一個(gè)符合上述運(yùn)算特征的例子).
(2)觀察、歸納,得出猜想.
如果為正整數(shù),用含的式子表示上述的運(yùn)算規(guī)律為: .
(3)證明你的猜想.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com