【題目】點到直線的距離是指( )

A. 直線外一點到這條直線的垂線段

B. 直線外一點與這條直線上任意一點之間的距離

C. 直線外一點到這條直線的垂線的長度

D. 直線外一點到這條直線的垂線段的長度

【答案】D

【解析】

根據(jù)點到直線的距離,可得答案.

點到直線的距離是直線外的點到這條直線的垂線段的長度,故D符合題意.
故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù) 的圖象分別與x軸、y軸交于A、B,以線段AB為邊在第一象限內(nèi)作等腰Rt△ABC,使∠BAC=90°.

(1)分別求點A、C的坐標(biāo);
(2)在x軸上求一點P,使它到B、C兩點的距離之和最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(遼寧丹東)如圖,在平面直角坐標(biāo)系中,ABC的三個頂點坐標(biāo)分別為A(1,4),B(4,2),C(3,5)(每個方格的邊長均為1個單位長度).

(1)請畫出A1B1C1,使A1B1C1ABC關(guān)于x軸對稱;

(2)將ABC繞點O逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的A2B2C2,并直接寫出點B旋轉(zhuǎn)到點B2所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,圖2,在平面直角坐標(biāo)系xOy中,A(0,4),B(0,2),點C在x軸的正半軸上,點D為OC的中點.

(1)求證:BD∥AC;
(2)如果OE⊥AC于點E,OE=2時,求點C的坐標(biāo);
(3)如果OE⊥AC于點E,當(dāng)四邊形ABDE為平行四邊形時,求直線AC的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們進(jìn)入中學(xué)以來,已經(jīng)學(xué)習(xí)過不少有關(guān)數(shù)據(jù)的統(tǒng)計量,例如_____________________等,它們分別從不同的側(cè)面描述了一組數(shù)據(jù)的特征.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,ACB=90,AO是ABC的角平分線。以O(shè)為圓心,OC為半徑作O。

(1)(3分)求證:AB是O的切線。

(2)(3分)已知AO交O于點E,延長AO交O于點D, tanD=,求的值。

(3)(4分)在(2)的條件下,設(shè)O的半徑為3,求AB的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列選項中,能夠反映一組數(shù)據(jù)離散程度的統(tǒng)計量是(
A.平均數(shù)
B.中位數(shù)
C.眾數(shù)
D.方差

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是(
A.兩直線被第三條直線所截得的同位角相等
B.兩直線被第三條直線所截得的同旁內(nèi)角互補
C.兩平行線被第三條直線所截得的同位角的平分線互相垂直
D.兩平行線被第三條直線所截得的同旁內(nèi)角的平分線互相垂直

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】星期天,李玉剛同學(xué)隨爸爸媽媽會老家探望爺爺奶奶,爸爸8:30騎自行車先走,平均每小時騎行20km;李玉剛同學(xué)和媽媽9:30乘公交車后行,公交車平均速度是40km/h.爸爸的騎行路線與李玉剛同學(xué)和媽媽的乘車路線相同,路程均為40km/h.設(shè)爸爸騎行時間為x(h).

(1)請分別寫出爸爸的騎行路程y1(km)、李玉剛同學(xué)和媽媽的乘車路程y2(km)與x(h)之間的函數(shù)解析式,并注明自變量的取值范圍;

(2)請在同一個平面直角坐標(biāo)系中畫出(1)中兩個函數(shù)的圖象;

(3)請回答誰先到達(dá)老家.

查看答案和解析>>

同步練習(xí)冊答案