分析 由折疊的性質(zhì),可得BF=BC=AD=5,然后由勾股定理求得AF的長(zhǎng),即可求得DF的長(zhǎng),再設(shè)EC=x,則DE=CD-EC=4-x,EF=EC=x,由在Rt△DEF中,DE2+DF2=EF2,即可得的方程(4-x)2+22=x2,解此方程即可求得答案.
解答 解:∵矩形紙片ABCD,AD=5,AB=4,
∴CD=AB=4,BC=AD=5,∠A=∠D=90°,
∵將紙片折疊,使點(diǎn)C落在AD上的點(diǎn)F處,
∴BF=BC=5,
∴AF=$\sqrt{B{F}^{2}-A{B}^{2}}$=3,
∴DF=AD-AF=2,
設(shè)EC=x,則DE=CD-EC=4-x,EF=EC=x,
在Rt△DEF中,DE2+DF2=EF2,
∴(4-x)2+22=x2,
解得:x=$\frac{5}{2}$,
∴EC=$\frac{5}{2}$.
故答案為:$\frac{5}{2}$.
點(diǎn)評(píng) 此題考查了折疊的性質(zhì)、矩形的性質(zhì)以及勾股定理.注意掌握方程思想的應(yīng)用是解此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a+3<b+3 | B. | $\frac{a}{2}$>$\frac{2}$ | C. | -a>-b | D. | a-1<b-1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=12x | B. | y=18x | C. | y=$\frac{2}{3}$x | D. | y=$\frac{3}{2}x$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com