【題目】如圖,在扇形OAB中,∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,點D在OB上,點E在OB的延長線上,若正方形CDEF的邊長為2,則圖中陰影部分的面積為( )
A.π﹣2
B.2π﹣2
C.4π﹣4
D.4π﹣8
【答案】A
【解析】解:連接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是 的中點, ∴∠COD=45°,
∴OC= CD=2 ,
∴陰影部分的面積=扇形BOC的面積﹣三角形ODC的面積
= ×π×(2 )2﹣ ×22
=π﹣2.
故選:A.
【考點精析】掌握正方形的性質(zhì)和扇形面積計算公式是解答本題的根本,需要知道正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的部分圖象如圖所示,則下列正確的說法有( )
①點P(ac,b)在第二象限;
②x>1時y隨x的增大而增大;
③b2﹣4ac>0;
④關(guān)于x的一元二次方程ax2+bx+c=0解為x1=﹣1,x2=3;
⑤關(guān)于x的不等式ax2+bx+c>0 的解集為0<x<3.
A.2個
B.3個
C.4個
D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解不等式(組)
(Ⅰ)解不等式5x﹣2≥3(x+1),并把它的解集在數(shù)軸上表示出來.
(Ⅱ)解不等式組
請結(jié)合題意填空,完成本題的解答.
解不等式①,得 ;
解不等式②,得 ;
把不等式①和②的解集在數(shù)軸上表示出來:
原不等式組的解集為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,過⊙O外一點P引⊙O的兩條切線PA、PB,切點分別是A、B,OP交⊙O于點C,點D是 上不與點A、點C重合的一個動點,連接AD、CD,若∠APB=80°,則∠ADC的度數(shù)是( )
A.15°
B.20°
C.25°
D.30°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:
(1)如圖(1),等邊△ABC內(nèi)有一點P到頂點A,B,C的距離分別為3,4,5,則∠APB= .
分析:由于PA,PB不在一個三角形中,為了解決本題我們可以將△ABP繞頂點A旋轉(zhuǎn)到△ACP′處,此時△ACP′≌ , 這樣,就可以利用全等三角形知識,將三條線段的長度轉(zhuǎn)化到一個三角形中從而求出∠APB的度數(shù).
(2)請你利用第(1)題的解答思想方法,解答下面問題:已知如圖(2),△ABC中,∠CAB=90°,AB=AC,E、F為BC上的點且∠EAF=45°,求證:BE2+CF2=EF2 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年暑期臨近,學生們也可輕松逛逛商場,選擇自己心儀的衣服安岳上府街一服裝店老板打算不錯失這一良機,計劃購進甲、乙兩種T恤已知購進甲T恤2件和乙T恤3件共需310元;購進甲T恤1件和乙T恤2件共需190元
求甲、乙兩種T恤每件的進價分別是多少元?
為滿足市場需求,服裝店需購進甲、乙兩種T恤共100件,要求購買兩種T恤的總費用不超過6540元,并且購買甲T恤的數(shù)量應(yīng)小于購買甲乙兩種T恤總數(shù)量的,請你通過計算,確定服裝店購買甲乙兩種T恤的購買方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于的方程x2+2x+m﹣2=0.
(1)若該方程有兩個不相等的實數(shù)根,求實數(shù)m的取值范圍;
(2)當該方程的一個根為1時,求m的值及方程的另一根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E為正方形ABCD對角線BD上的一點,且BE=BC=1.
(1)求∠DCE的度數(shù);
(2)點P在EC上,作PM⊥BD于M,PN⊥BC于N,求PM+PN的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,點A的坐標為(﹣8,0),直線BC經(jīng)過點B(﹣8,6),C(0,6),將四邊形OABC繞點O按順時針方向旋轉(zhuǎn)角度α得到四邊形OA′B′C′,此時邊OA′與邊BC交于點P,邊B′C′與BC的延長線交于點Q,連接AP.
(1)四邊形OABC的形狀是 .
(2)在旋轉(zhuǎn)過程中,當∠PAO=∠POA,求P點坐標.
(3)在旋轉(zhuǎn)過程中,當P為線段BQ中點時,連接OQ,求△OPQ的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com