【題目】下列說法中正確的是( 。.

A. “打開電視機,正在播放《動物世界》”是必然事件

B. 某種彩票的中獎概率為,說明每買1000張,一定有一張中獎

C. 拋擲一枚質地均勻的硬幣一次,出現(xiàn)正面朝上的概率為

D. 想了解長沙市所有城鎮(zhèn)居民的人均年收入水平,宜采用抽樣調查

【答案】D

【解析】試題分析:根據隨機事件,可判斷A;根據概率的意義,可判斷B、C;根據調查方式,可判斷D

解:A、打開電視機,正在播放《動物世界》是隨機事件,故A錯誤;

B、某種彩票的中獎概率為,說明每買1000張,有可能中獎,也有可能不中獎,故B錯誤;

C、拋擲一枚質地均勻的硬幣一次,出現(xiàn)正面朝上的概率為,故C錯誤;

D、想了解長沙市所有城鎮(zhèn)居民的人均年收入水平,宜采用抽樣調查,故D正確;

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系XOY中,若A(0,a)、B(b,0)且(a﹣4)2+=0,以AB為直角邊作等腰RtABC,CAB=90°,AB=AC.

(1)求C點坐標;

(2)如圖過C點作CDX軸于D,連接AD,求ADC的度數(shù);

(3)如圖在(1)中,點A在Y軸上運動,以OA為直角邊作等腰RtOAE,連接EC,交Y軸于F,試問A點在運動過程中SAOB:SAEF的值是否會發(fā)生變化?如果沒有變化,請直接寫出它們的比值   (不需要解答過程或說明理由).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AD平分∠BAC,

(1)圖①中,已知AF⊥BC , ∠B=500,∠C=600. 求∠DAF的度數(shù).

2)圖②中,請你在直線AD上任意取一點E(不與點A、D重合),畫EF⊥BC,垂足為F.已知∠B=α,∠C=ββa.求∠DEF的度數(shù). (用α、β的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB與CD相交于點O,OE⊥AB,OF⊥CD,OP是∠BOC的平分線.

(1)請寫出圖中所有∠EOC的補角 ____________________;

(2)如果∠POC:∠EOC=2:5.求∠BOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司計劃2016年在甲、乙兩個電視臺播放總時長為300分鐘的廣告,已知甲、乙兩電視臺的廣告收費標準分別為500/分鐘和200/分鐘,該公司的廣告總費用為9萬元.預計甲、乙兩個電視臺播放該公司的廣告能給該公司分別帶來0.3萬元/分鐘和0.2萬元/分鐘的收益,該公司在甲、乙兩個電視臺播放廣告的時長應分別為多少分鐘?預計甲、乙兩電視臺2016年為此公司所播放的廣告將給該公司帶來多少萬元的總收益?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一只跳蚤在第一象限及x軸、y軸上跳動,在第一秒鐘,它從原點跳動到(0,1),然后接著按圖中箭頭所示方向跳動[即(0,00,11,11,0→…],且每秒跳動一個單位,那么第35秒時跳蚤所在位置的坐標是( )

A. 4,0B. 5,0C. 0,5D. 5,5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列方程及解的特征: ⑴x+=2的解為x1=x2=1

x+=的解為x1=2,x2=;

x+=的解為x1=3x2=;

解答下列問題:

(1)請猜想:方程x+=的解為________;

(2)請猜想:關于x的方程x+═________的解為x1=a,x2=a≠0);

(3)下面以解方程x+=為例,驗證(1)中猜想結論的正確性.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直角ABC中,∠C=90°,點D,E分別是邊AC,BC上的點,點P是一動點.令∠PDA=1,PEB=2,DPE=α.

(1)若點P在線段AB上,如圖①,且∠α=50°,則∠1+2=      

(2)若點P在斜邊AB上運動,如圖②,則∠α、1、2之間的關系為      ;

(3)如圖③,若點P在斜邊BA的延長線上運動(CE<CD),請直接寫出∠α、1、2之間的關系:      ;

(4)若點P運動到ABC形外(只需研究圖④情形),則∠α、1、2之間有何關系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC的三個頂點分別為A23)、B3,1)、C﹣2,﹣2).

1)請在圖中作出ABC關于直線x=﹣1的軸對稱圖形DEFA、B、C的對應點分別是D、E、F),并直接寫出D、E、F的坐標;

2)求四邊形ABED的面積.

查看答案和解析>>

同步練習冊答案