【題目】按如下方法,將ABC的三邊縮小的原來的,如圖,任取一點(diǎn)O,連AO、BO、CO,并取它們的中點(diǎn)D、EF,得DEF,則下列說法正確的個數(shù)是( 。

ABCDEF是位似圖形ABCDEF是相似圖形

ABCDEF的周長比為12ABCDEF的面積比為41

A. 1B. 2C. 3D. 4

【答案】C

【解析】

根據(jù)位似圖形的性質(zhì),得出①△ABC與△DEF是位似圖形進(jìn)而根據(jù)位似圖形一定是相似圖形得出 ②△ABC與△DEF是相似圖形,再根據(jù)周長比等于位似比,以及根據(jù)面積比等于相似比的平方,即可得出答案.

解:根據(jù)位似性質(zhì)得出①△ABC與△DEF是位似圖形,

②△ABC與△DEF是相似圖形,

∵將△ABC的三邊縮小的原來的

∴△ABC與△DEF的周長比為21,

故③選項(xiàng)錯誤,

根據(jù)面積比等于相似比的平方,

∴④△ABC與△DEF的面積比為41

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸,軸分別交于點(diǎn),經(jīng)過點(diǎn)的拋物線軸的另一個交點(diǎn)為點(diǎn),點(diǎn)是拋物線上一點(diǎn),過點(diǎn)軸于點(diǎn),連接,設(shè)點(diǎn)的橫坐標(biāo)為.

求拋物線的解析式;

當(dāng)點(diǎn)在第三象限,設(shè)的面積為,求的函數(shù)關(guān)系式,并求出的最大值及此時點(diǎn)的坐標(biāo);

連接,若,請直接寫出此時點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊ABC中,P為三角形內(nèi)一點(diǎn),過PPDBC,PEAB,PFAC,連結(jié)AP、BP、CP,如果SAPFSBPESPCD,那么ABC的內(nèi)切圓半徑為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC紙片中,ABBCAC,點(diǎn)DAB邊的中點(diǎn),點(diǎn)E在邊AC上,將紙片沿DE折疊,使點(diǎn)A落在BC邊上的點(diǎn)F處.則下列結(jié)論成立的個數(shù)有( 。佟BDF是等腰直角三角形;②∠DFE=∠CFE;③DE是△ABC的中位線;④BF+CEDF+DE

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】積極響應(yīng)政府提出的“綠色發(fā)展·碳出行”號召,某社區(qū)決定購置一批共享單車,經(jīng)市場調(diào)查知,購買3量男式單車與4輛女式單車費(fèi)用相同,購買5輛男式單車與4輛女式單車共需16000元.

(1)求男式單車和女式單車的單價;

(2)該社區(qū)要求男式單比女式單車多4輛,兩種單車至少需要22輛,購置兩種單車的費(fèi)用不超過50000元,該社區(qū)有幾種購置方案?怎樣購置才能使所需總費(fèi)用最低,最低費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+b與反比例函數(shù)的圖象相交于點(diǎn)A(a,3),且與x軸相交于點(diǎn)B.

(1)求a、b的值;

(2)若點(diǎn)P在x軸上,且AOP的面積是AOB的面積的,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店以20/千克的單價新進(jìn)一批商品,經(jīng)調(diào)查發(fā)現(xiàn),在一段時間內(nèi),銷售量y(千克)與銷售單價x(元/千克)之間為一次函數(shù)關(guān)系,如圖所示.

1)求yx的函數(shù)表達(dá)式;

2)要使銷售利潤達(dá)到800元,銷售單價應(yīng)定為每千克多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,⊙C的半徑為r,給出如下定義:若點(diǎn)P的橫、縱坐標(biāo)均為整數(shù),且到圓心C的距離dr,則稱P為⊙C 的關(guān)聯(lián)整點(diǎn).

1)當(dāng)⊙O的半徑r=2時,在點(diǎn)D2,-2),E-1,0),F0,2)中,為⊙O的關(guān)聯(lián)整點(diǎn)的是 ;

2)若直線上存在⊙O的關(guān)聯(lián)整點(diǎn),且不超過7個,求r的取值范圍;

3)⊙C的圓心在x軸上,半徑為2,若直線上存在⊙C的關(guān)聯(lián)整點(diǎn),求圓心C的橫坐標(biāo)t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點(diǎn)E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點(diǎn)G,CE的延長線交DA的延長線于點(diǎn)H,連接AC,EF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)線段AC,AG,AH什么關(guān)系?請說明理由;

(3)設(shè)AEm,

①△AGH的面積S有變化嗎?如果變化.請求出Sm的函數(shù)關(guān)系式;如果不變化,請求出定值.

②請直接寫出使△CGH是等腰三角形的m值.

查看答案和解析>>

同步練習(xí)冊答案