【題目】如圖,△ABC是等腰直角三角形,AC=BC,AB=4,D為AB上的動(dòng)點(diǎn),DP⊥AB交折線A﹣C﹣B于點(diǎn)P,設(shè)AD=x,△ADP的面積為y,則y與x的函數(shù)圖象正確的是( )

A.
B.
C.
D.

【答案】B
【解析】解:由題意可得,
當(dāng)0≤x≤2時(shí),y=
當(dāng)2≤x≤4時(shí),y= = ,
∴當(dāng)0≤x≤2時(shí),函數(shù)圖象為y= 的右半部分,當(dāng)2≤x≤4時(shí),函數(shù)圖象為y= 的右半部分,
故選B.
【考點(diǎn)精析】掌握函數(shù)關(guān)系式和函數(shù)的圖象是解答本題的根本,需要知道用來表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式;函數(shù)的圖像是由直角坐標(biāo)系中的一系列點(diǎn)組成;圖像上每一點(diǎn)坐標(biāo)(x,y)代表了函數(shù)的一對(duì)對(duì)應(yīng)值,他的橫坐標(biāo)x表示自變量的某個(gè)值,縱坐標(biāo)y表示與它對(duì)應(yīng)的函數(shù)值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O是矩形紙片ABCD的對(duì)稱中心,E是BC上一點(diǎn),將紙片沿AE折疊后,點(diǎn)B恰好與點(diǎn)O重合.若BE=3,則折痕AE的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖1、圖2是兩張形狀大小完全相同的方格紙,方格紙中的每個(gè)小正方形的邊長均為1,線段AB、EF的端點(diǎn)均在小正方形的頂點(diǎn)上.
(1)如圖1,作出以AB為對(duì)角線的正方形并直接寫出正方形的周長;
(2)如圖2,以線段EF為一邊作出等腰△EFG(點(diǎn)G在小正方形頂點(diǎn)處)且頂角為鈍角,并使其面積等于4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+3(a≠0)過A(4,4),B(2,m)兩點(diǎn),點(diǎn)B到拋物線對(duì)稱軸的距離記為d,滿足0<d≤1,則實(shí)數(shù)m的取值范圍是(
A.m≤2或m≥3
B.m≤3或m≥4
C.2<m<3
D.3<m<4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)A、B、C的坐標(biāo)分別是(1,0)、(3,1)、(3,3),雙曲線y= (k≠0,x>0)過點(diǎn)D.
(1)求雙曲線的解析式;
(2)作直線AC交y軸于點(diǎn)E,連結(jié)DE,求△CDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=2+
(1)寫出自變量x的取值范圍:;
(2)請(qǐng)通過列表,描點(diǎn),連線畫出這個(gè)函數(shù)的圖象: ①列表:

x

﹣8

﹣4

﹣3

﹣2

﹣1

1

2

3

4

8

y

1

0

﹣2

﹣6

10

6

4

3

②描點(diǎn)(在下面給出的直角坐標(biāo)系中補(bǔ)全表中對(duì)應(yīng)的各點(diǎn));
③連線(將圖中描出的各點(diǎn)用平滑的曲線連接起來,得到函數(shù)的圖象).

(3)觀察函數(shù)的圖象,回答下列問題: ①圖象與x軸有個(gè)交點(diǎn),所以對(duì)應(yīng)的方程2+ =0實(shí)數(shù)根是;
②函數(shù)圖象的對(duì)稱性是
A、既是軸對(duì)稱圖形,又是中心對(duì)稱圖形
B、只是軸對(duì)稱圖形,不是中心對(duì)稱圖形
C、不是軸對(duì)稱圖形,而是中心對(duì)稱圖形
D、既不是軸對(duì)稱圖形也不是中心對(duì)稱圖形
(4)寫出函數(shù)y=2+ 與y= 的圖象之間有什么關(guān)系?(從形狀和位置方面說明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題。
(1)問題發(fā)現(xiàn):

如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點(diǎn)D為BC的中點(diǎn),以CD為一邊作正方形CDEF,點(diǎn)E恰好與點(diǎn)A重合,則線段BE與AF的數(shù)量關(guān)系為
(2)拓展探究:

在(1)的條件下,如果正方形CDEF繞點(diǎn)C旋轉(zhuǎn),連接BE、CE、AF,線段BE與AF的數(shù)量關(guān)系有無變化?請(qǐng)僅就圖2的情形給出證明;
(3)問題解決:
當(dāng)正方形CDEF旋轉(zhuǎn)到B、E、F三點(diǎn)共線時(shí)候,直接寫出線段AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,∠B=60°,以邊上AC上一點(diǎn)O為圓心,OA為半徑作⊙O,⊙O恰好經(jīng)過邊BC的中點(diǎn)D,并與邊AC相交于另一點(diǎn)F.
(1)求證:BD是⊙O的切線;
(2)若BC=2 ,E是半圓 上一動(dòng)點(diǎn),連接AE、AD、DE. 填空:
①當(dāng) 的長度是時(shí),四邊形ABDE是菱形;
②當(dāng) 的長度是時(shí),△ADE是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿GH對(duì)折,點(diǎn)C落在Q處,點(diǎn)D落在E處,EQ與BC相交于F.若AD=8cm,AB=6cm,AE=4cm.則△EBF的周長是cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案