【題目】近年來霧霾天氣給人們的生活帶來很大影響,空氣質(zhì)量問題倍受人們關(guān)注.某單位計(jì)劃在室內(nèi)安裝空氣凈化裝置,需購進(jìn)A、B兩種設(shè)備.每臺B種設(shè)備價格比每臺A種設(shè)備價格多0.7萬元,花3萬元購買A種設(shè)備和花7.2萬元購買B種設(shè)備的數(shù)量相同.

(1)求A種、B種設(shè)備每臺各多少萬元?

(2)根據(jù)單位實(shí)際情況,需購進(jìn)AB兩種設(shè)備共20臺,總費(fèi)用不高于15萬元,求A種設(shè)備至少要購買多少臺?

【答案】(1)每臺A種設(shè)備0.5萬元,每臺B種設(shè)備1.2萬元.(2)A種設(shè)備至少要購買13臺.

【解析】試題分析:(1)設(shè)每臺A種設(shè)備x萬元,則每臺B種設(shè)備(x+0.7)萬元,根據(jù)數(shù)量=總價÷單價結(jié)合花3萬元購買A種設(shè)備和花7.2萬元購買B種設(shè)備的數(shù)量相同,即可得出關(guān)于x的分式方程,解之并檢驗(yàn)后即可得出結(jié)論;

(2)設(shè)購買A種設(shè)備m臺,則購買B種設(shè)備(20﹣m)臺,根據(jù)總價=單價×數(shù)量結(jié)合總費(fèi)用不高于15萬元,即可得出關(guān)于m的一元一次不等式,解之即可得出m的取值范圍,取其內(nèi)的最小正整數(shù)即可.

試題解析:(1)設(shè)每臺A種設(shè)備x萬元,則每臺B種設(shè)備(x+0.7)萬元,

根據(jù)題意得: ,

解得:x=0.5.

經(jīng)檢驗(yàn),x=0.5是原方程的解,

∴x+0.7=1.2.

答:每臺A種設(shè)備0.5萬元,每臺B種設(shè)備1.2萬元.

(2)設(shè)購買A種設(shè)備m臺,則購買B種設(shè)備(20﹣m)臺,

根據(jù)題意得:0.5m+1.2(20﹣m)≤15,

解得:m≥

∵m為整數(shù),

∴m≥13.

答:A種設(shè)備至少要購買13臺.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場國慶節(jié)搞促銷活動,購物不超過200元不給優(yōu)惠,超過200(不含200元)元而不足500元,所有商品按購物價優(yōu)惠10%,超過500元的,其中500元按9折優(yōu)惠,超過的部分按8折優(yōu)惠,A,B兩個商品價格分別為180元,550元。

(1) 某人第一次購買一件A商品,第二次購買一件B商品,實(shí)際共付款多少元?

(2) 若此人一次購物購買A,B商品各一件,則實(shí)際付款多少錢?

(3) 國慶期間,某人在該商場兩次購物分別付款180元和550元,如果他合起來一次性購買同樣的商品,還可節(jié)約多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究:

1.新知學(xué)習(xí)

若把將一個平面圖形分為面積相等的兩個部分的直線叫做該平面圖形的“面線”,其“面線”被該平面圖形截得的線段叫做該平面圖形的“面徑”(例如圓的直徑就是圓的“面徑”).

2.解決問題

已知等邊三角形ABC的邊長為2.

(1)如圖一,若AD⊥BC,垂足為D,試說明AD是△ABC的一條面徑,并求AD的長;

(2)如圖二,若ME∥BC,且ME是△ABC的一條面徑,求面徑ME的長;

(3)如圖三,已知D為BC的中點(diǎn),連接AD,M為AB上的一點(diǎn)(0<AM<1),E是DC上的一點(diǎn),連接ME,ME與AD交于點(diǎn)O,且S△MOA=S△DOE

①求證:ME是△ABC的面徑;

②連接AE,求證:MD∥AE;

(4)請你猜測等邊三角形ABC的面徑長l的取值范圍(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的兩條對角線相交于O,且AC平分∠DAB.

(1)求證:四邊形ABCD是菱形;

(2)若AC=8,BD=6,試求點(diǎn)O到AB的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式中,從左到右的變形是因式分解的是( 。

A.3x+3y+13x+y)+1B.a22a+1=(a12

C.m+n)(mn)=m2n2D.xxy)=x2xy

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)B、E分別在AC、DF上,AF分別交BD、CE于點(diǎn)MN,∠A=∠F,∠1=∠2.

(1)求證:四邊形BCED是平行四邊形;

(2)已知DE=2,連接BN,若BN平分DBC,求CN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)為(2,2)請解答下列問題:

(1)畫出ABC關(guān)于y軸對稱的A1B1C1,并寫出A1的坐標(biāo).

(2)畫出ABC繞點(diǎn)B逆時針旋轉(zhuǎn)90°后得到的A2B2C2,并寫出A2的坐標(biāo).

(3)畫出A2B2C2關(guān)于原點(diǎn)O成中心對稱的A3B3C3,并寫出A3的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x2xy+20,y2xy60,則xy的值是( 。

A.4B.2C.±2D.±4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的邊AB:BC=3:2,點(diǎn)A(3,0),B(0,6)分別在x軸,y軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)D,且與邊BC交于點(diǎn)E,則點(diǎn)E的坐標(biāo)為

查看答案和解析>>

同步練習(xí)冊答案