精英家教網 > 初中數學 > 題目詳情

【題目】已知長方形紙片,點在邊上,點在邊上,將沿翻折到,射線交于點.在邊上,將沿翻折到,射線交于點.

1)如圖1,若點與點重合,直接寫出以為頂點的兩對相等的角,并求的度數;

2)如圖2,若點在點的右側,且,,求的度數;

3)若點在點的左側,且,求的度數(用含的代數式表示).

【答案】1)∠AEN=NEF,∠BEM=FEM;∠MEN=90°;(2)∠FEG=24°,∠MEN=102°;(3)∠MEN=90°-α.

【解析】

1)根據折疊的性質,平角的定義,角的和差定義計算即可;
2)根據折疊的性質以及平角的定義,可得出∠AEN +BEM=180°-FEG),再結合所給的兩個等式可得出∠FEG的度數;根據∠MEN=180°-(∠AEN+BEM),求出∠AEN+BEM即可解決問題;
3)先畫出圖形,根據(2)中的思路即可分析出∠MEN與∠FEG之間的等量關系,即可得出結果.

解:(1)根據折疊的性質可得,

E為頂點的兩對相等的角分別為: AEN=NEF,∠BEM=FEM
∴∠NEF=AEF,∠MEF=BEF
∴∠MEN=NEF+MEF=AEF+BEF=(∠AEF+BEF=AEB,
∵∠AEB=180°,
∴∠MEN=×180°=90°;

2)由(1)可得∠AEN=AEF,∠BEM=BEG,
∴∠AEN +BEM =AEF+BEG=(∠AEF+BEG=(∠AEB-FEG).

∴∠AEN +BEM=180°-FEG)①,

,

∴兩式相加得∠AEN+BEM=2FEG+30°②,

由①②可得,180°-FEG=2FEG+30°,解得∠FEG=24°,

∴∠AEN+BEM =180°-24°)=78°,
∴∠MEN=180°-(∠AEN+BEM =180°-78°=102°.

的度數為24°,的度數為102°.
3)如圖3,若點G在點F的左側,∠FEG=α.

根據(2)知,∠MEN=180°-AEN+BEM=180°-(∠AEF+BEG=180°-(180°+FEG)=90°-FEG

∴∠MEN=90°-α.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,經過點A的雙曲線同時經過點B,且點A在點B的左側,點A的橫坐標為,∠AOB=∠OBA=45°,則的值為_________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,有一塊RtABC的紙片,∠ABC=900,AB6,BC8,將△ABC沿AD折疊,使點B落在AC上的E處,則BD的長為( )

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀第①小題的計算方法,再計算第②小題.

–5+–9+17+–3

解:原式=[–5+]+[–9+]+17++[–3+]

=[–5+–9+–3+17]+[+++]

=0+–1

=–1

上述這種方法叫做拆項法.靈活運用加法的交換律、結合律可使運算簡便.

②仿照上面的方法計算:(﹣2000+(﹣1999+4000+(﹣1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明同學將某班級畢業(yè)升學體育測試成績(滿分30分)統(tǒng)計整理,得到下表,則下列說法錯誤的是(  )

分數

20

21

22

23

24

25

26

27

28

人數

2

4

3

8

10

9

6

3

1

A. 該組數據的眾數是24

B. 該組數據的平均數是25

C. 該組數據的中位數是24

D. 該組數據的極差是8

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC中,AB=BC,BEAC于點E,ADBC于點D,BAD=45°,AD與BE交于點F,連接CF.

(1)求證:BF=2AE;

(2)若CD=,求AD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,將△ABO繞點A順時針旋轉到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1x軸上,再將△AB1C1繞點B1順時針旋轉到△A1B1C2的位置,點C2x軸上,將△A1B1C2繞點C2順時針旋轉到△A2B2C2的位置,點A2x軸上,依次進行下去.若點A(,0),B(0,2),則點B2018的坐標為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖:在數軸上點表示數,點表示數,點表示數,是多項式的一次項系數,是絕對值最小的整數,單項式的次數為.

1= ,= ,= ;

2)若將數軸在點處折疊,則點與點 重合( 不能”);

3)點開始在數軸上運動,若點以每秒1個單位長度的速度向右運動,同時, 和點分別以每秒3個單位長度和2個單位長度的速度向左運動,秒鐘過后,若點與點B之間的距離表示為,點與點之間的距離表示為,則= , = (用含的代數式表示);

4)請問:AB+BC的值是否隨著時間的變化而改變?若變化,請說明理由;若不變,請求其值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某出租車司機從公司出發(fā),在東西方向的人民路上連續(xù)接送5批客人,行駛路程記錄如下(規(guī)定向東為正,向西為負,單位:km)

1)接送完第5批客人后,該駕駛員在公司什么方向,距離公司多少千米?

2)若該出租車每千米耗油0.2升,那么在這過程中共耗油多少升?

3)若該出租車的計價標準為:行駛路程不超過3km收費10元,超過3km的部分按每千米加1.8元收費,在這過程中該駕駛員共收到車費多少元?

查看答案和解析>>

同步練習冊答案