【題目】如圖,正方形紙片ABCD沿直線BE折疊,點C恰好落在點G處,連接BG并延長,交CD于點H,延長EG交AD于點F,連接FH.若AF=FD=6cm,則FH的長為_____cm.
【答案】3
【解析】
連接BF,先證明Rt△ABF≌Rt△GBF,得到∠AFB=∠GFB,FA=FG,再證明Rt△FGH≌Rt△FDH,得到∠GFH=∠DFH,于是∠BFH=∠BFG+∠GFH=×180°=90°,根據(jù)△ABF∽△DFH,得,從而可求出FH.
解:如圖,連接BF.
∵四邊形ABCD是正方形,
∴∠A=∠C=90°,AB=BC=AF+FD=12cm.
由折疊可知,BG=BC=12cm,∠BGE=∠BCE=90°.
∴AB=GB.
在Rt△ABF和Rt△GBF中,
,
∴Rt△ABF≌Rt△GBF(HL).
∴∠AFB=∠GFB,FA=FG,
又∵AF=FD,
∴FG=FD.
同理可證Rt△FGH≌Rt△FDH,
∴∠GFH=∠DFH,
∴∠BFH=∠BFG+∠GFH=180°=90°,
∴∠AFB+∠DFH=90°.
又∵∠AFB+∠ABF=90°,
∴∠ABF=∠DFH.
又∵∠A=∠D=90°,
∴△ABF∽△DFH,
∴,
在Rt△ABF中,由勾股定理,得BF=,
∴,
∴FH=.
故答案為:3.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=-x+3與x軸,y軸分別交于B,C兩點,拋物線y=-x2+bx+c經(jīng)過B,C兩點,點A是拋物線與x軸的另一個交點.
(1)求此拋物線的函數(shù)解析式;
(2)在拋物線上是否存在點P,使S△PAB=2S△CAB,若存在,求出P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的盒子中裝有三張卡片,三張卡片的正面分別標有數(shù)字,,,這些卡片除數(shù)字外都相同,將卡片攪勻.
(1)從盒子中任意抽取一張卡片,恰好抽到標有奇數(shù)卡片的概率是_________.
(2)先從盒子中任意抽取一張卡片,再從余下的兩張卡片中任意抽取一張卡片,求抽取的兩張卡片標有數(shù)字之和大于的概率(請用畫樹狀圖或列表等方法求解).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,線段AC是⊙O的直徑,過A點作直線BF交⊙O于A、B兩點,過A點作∠FAC的角平分線交⊙O于D,過D作AF的垂線交AF于E.
(1)證明DE是⊙O的切線;
(2)證明AD2=2AEOA;
(3)若⊙O的直徑為10,DE+AE=4,求AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線與軸、軸分別交于點,,拋物線經(jīng)過點,將點向右平移5個單位長度,得到點.
(1)求點的坐標;
(2)求拋物線的對稱軸;
(3)若拋物線與線段恰有一個公共點,結(jié)合函數(shù)圖象,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】舍利生生塔位于晉祠南瑞,建于隋開皇年間,宋代重修,清乾隆十六年(1751年)重建.七屋八角,琉璃瓦頂,遠遠望去,高聳的古塔,映襯著藍天白云,甚是壯觀.原塔內(nèi)每層均有佛像,開4門8窗,憑窗遠眺,晉祠內(nèi)外美景可一覽無余.如果在夕陽西下時欣賞寶塔,還會出現(xiàn)——天云錦、滿塔光輝的壯麗景觀,被譽為“寶塔披霞”.某數(shù)學“綜合與實踐”小組的同學把“測量舍利生生塔高”作為一項課題活動,他們制定了測量方案,并利用課余時間完成了實地測量,測量結(jié)果如表:
課題 | 測量舍利生生塔高 | |||
測量示意圖 | 說明:某同學在地面上選擇點C,使用手持測角儀,測得此時樓頂A的仰角∠AHE=α,沿CB方向前進到點D,測量出C,D之間的距離CD=xm,在點D使用手持測角儀,測得此時樓頂A的仰角∠AFE=β | |||
測量數(shù)據(jù) | α的度數(shù) | β的度數(shù) | CD的長度 | 該同學眼睛離地面的距離HC |
24° | 37° | 32m | 1.76m | |
… | … |
(1)請幫助該小組的同學根據(jù)上表中的測量數(shù)據(jù),求塔高AB.(結(jié)果精確到1m;參考數(shù)據(jù):sin24°≈0.41,cos24°≈0.91,tan24°≈0.45,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
(2)該小組要寫出一份完整的課題活動報告,除上表中的項目外,你認為還需要補充哪些項目?(寫出一個即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,以點A為圓心AB長為半徑畫弧交AD于點F,再分別以點B,F為圓心,大于BF的長度為半徑畫弧,兩弧交于點P;連接AP并延長交BC于點E,連接EF.
(1)求證:四邊形ABEF是菱形;
(2)若∠C=60°,AE=4,求菱形ABEF的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com