【題目】適合下列條件的ABC, 直角三角形的個(gè)數(shù)為

,A=45°;③∠A=32°, B=58°;

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

【答案】C

【解析】根據(jù)勾股定理的逆定理,可分別求出各邊的平方,然后計(jì)算判斷:,故①不能構(gòu)成直角三角形;

當(dāng)a=6,∠A=45°時(shí),②不足以判定該三角形是直角三角形;

根據(jù)直角三角形的兩銳角互余,可由∠A+∠B=90°,可知③是直角三角形;

根據(jù)72=49,242=576,252=625,可知72+242=252,故④能夠成直角三角形;

由三角形的三邊關(guān)系,2+2=4可知⑤不能構(gòu)成三角形;

a=3x,b=4x,c=5x,可知a2+b2=c2,故⑥能夠成直角三角形;

根據(jù)三角形的內(nèi)角和可知⑦不等構(gòu)成直角三角形;

a2=5,b2=20,c2=25,可知a2+b2=c2,故⑧能夠成直角三角形.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCDEF中,已知AB=DE,A=D,若要得到ABC≌△DEF,則還要補(bǔ)充一個(gè)條件,在下列補(bǔ)充方法:①AC=DF;②∠B=E;③∠B=F;④∠C=F BC=EF中,則錯(cuò)誤結(jié)論的序號(hào)是__________ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是圓O的直徑,CD是圓O的一條弦,且CD⊥AB于點(diǎn)E.

(1)若∠A=48°,求∠OCE的度數(shù);
(2)若CD=4 ,AE=2,求圓O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,CE、CF分別是ABC的內(nèi)外角平分線,過點(diǎn)ACE、CF的垂線,垂足分別為E、F.

(1)求證:四邊形AECF是矩形;

(2)當(dāng)ABC滿足什么條件時(shí),四邊形AECF是正方形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是拋物線y=2(x﹣2)2對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),直線x=t平行y軸,分別與y=x、拋物線交于點(diǎn)A,B.若△ABP是以點(diǎn)A或點(diǎn)B為直角頂點(diǎn)的等腰直角三角形,求滿足條件的t的值,則t=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)0﹣(﹣2)

(2)(+10)+(﹣14)

(3)5.6+(﹣0.9)+4.4+(﹣8.1)

(4)1﹣++

(5)(﹣0.5)﹣(﹣3)+2.75﹣(+7).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過市場(chǎng)調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價(jià)與銷量的相關(guān)信息如下表:

時(shí)間x(天)

1≤x<50

50≤x≤90

售價(jià)(元/件)

x+40

90

每天銷量(件)

200﹣2x

已知該商品的進(jìn)價(jià)為每件30元,設(shè)銷售該商品的每天利潤(rùn)為y元.
(1)求出y與x的函數(shù)關(guān)系式;
(2)問銷售該商品第幾天時(shí),當(dāng)天銷售利潤(rùn)最大,最大利潤(rùn)是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤(rùn)不低于4800元?請(qǐng)直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)郵政部門規(guī)定:國(guó)內(nèi)平信克以內(nèi)(包括克)每克需貼郵票元,不足克重的以克計(jì)算;超過克的,超過部分每克需加貼元,不足克的以克計(jì)算.

寄一封重克的國(guó)內(nèi)平信,需貼郵票多少元?

某人寄一封國(guó)內(nèi)平信貼了元郵票,此信重約多少克?

人參加一次數(shù)學(xué)競(jìng)賽,每份答卷重克,每個(gè)信封重克,將這份答卷分裝兩個(gè)信封寄出,怎樣裝才能使所貼郵票金額最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=kx+by=﹣2kx(k≠0)的圖象相交于點(diǎn)P(1,﹣4).

(1)求k、b的值;

(2)Q點(diǎn)(m,n)在函數(shù)y=kx+b的圖象上.

①求2n﹣4m+9的值;

②若一次函數(shù)y=x的圖象經(jīng)過點(diǎn)Q,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案