直線y=kx-4與y軸相交所成銳角的正切值為
1
2
,則k的值為( 。
A、
1
2
B、2
C、±2
D、±
1
2
分析:首先確定直線y=kx-4與y軸和x軸的交點(diǎn),然后利用直線y=kx-4與y軸相交所成銳角的正切值為
1
2
這一條件求出k的值.
解答:解:由直線的解析式可知直線與y軸的交點(diǎn)為(0,-4),即直線y=kx-4與y軸相交所成銳角的鄰邊為|-4|=4,與x軸的交點(diǎn)為y=0時(shí),x=
4
k
,
∵直線y=kx-4與y軸相交所成銳角的正切值為
1
2
,
即|
4
k
|=4×
1
2
,k=±2.
故選C.
點(diǎn)評(píng):此題比較復(fù)雜,涉及到銳角三角函數(shù),在解題時(shí)要注意k的正負(fù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線y=kx-1與x軸、y軸分別交于B、C兩點(diǎn),tan∠OCB=
1
2

(1)求B點(diǎn)的坐標(biāo)和k的值;
(2)若點(diǎn)A(x,y)是第一象限內(nèi)的直線y=kx-1上的一個(gè)動(dòng)點(diǎn).當(dāng)點(diǎn)A運(yùn)動(dòng)過(guò)程中,試寫出△AOB的面積S與x的函數(shù)關(guān)系式;
(3)探索:在(2)的條件下:
①當(dāng)點(diǎn)A運(yùn)動(dòng)到什么位置時(shí),△AOB的面積是
1
4
;
②在①成立的情況下,x軸上是否存在一點(diǎn)P,使△POA是等腰三角形?若存在,請(qǐng)寫出滿足條件的所有P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若a、b、c是非零實(shí)數(shù),且滿足
a
b+c
=
b
a+c
=
c
a+b
=k
,直線y=kx+b經(jīng)過(guò)點(diǎn)(4,0),求直線y=kx+b與兩坐標(biāo)軸所圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知直線y=kx+b與雙曲線y=
k
x
交于(x1,y1)、(x2,y2)兩點(diǎn),則x1x2的值(  )
A、與k有關(guān),與b無(wú)關(guān)
B、與k無(wú)關(guān),與b有關(guān)
C、與k、b都無(wú)關(guān)
D、與k、b都有關(guān)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、如圖,直線y1=kx+b與y2=-x-1交于點(diǎn)P,它們分別與x軸交于A、B,且B、P、A三點(diǎn)的橫坐標(biāo)分別為-1,-2,-3,則滿足y1>y2的x的取值范圍是
x>-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線y=kx+b與反比例函數(shù)y=
kx
(x<0)的圖象相交于點(diǎn)A、點(diǎn)B,與x軸交于精英家教網(wǎng)點(diǎn)C,過(guò)B作BD⊥x軸,且S△OBD=4,其中點(diǎn)A的坐標(biāo)為(n,4),點(diǎn)B的坐標(biāo)為(-4,m)
(1)試確定反比例函數(shù)和一次函數(shù)的關(guān)系式;
(2)求△AOB的面積;
(3)利用函數(shù)圖象回答:當(dāng)x為何值時(shí),一次函數(shù)的值大于反比例函數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案