【題目】如圖,RT△ABC中,,. 動(dòng)點(diǎn)同時(shí)分別從點(diǎn)出發(fā),分別沿著射線和射線的方向均以每秒1個(gè)單位的速度運(yùn)動(dòng),連接,以為直徑作交射線于點(diǎn),連接,設(shè)運(yùn)動(dòng)的時(shí)間為.
(1)當(dāng)點(diǎn)在線段上時(shí),用關(guān)于的代數(shù)式表示________,________. (直接寫(xiě)出結(jié)果)
(2)在整個(gè)運(yùn)動(dòng)過(guò)程中,當(dāng)為何值時(shí),以點(diǎn)、、為頂點(diǎn)的三角形與以點(diǎn)、、為頂點(diǎn)的三角形相似?
【答案】(1),;(2)見(jiàn)解析.
【解析】
(1)當(dāng)點(diǎn)E在線段AC上時(shí),由題意可知AE=t,則CE=AC-AE=8-t,;利用圓周角定理可證得∠EMF=90°,可證△CEM∽△CBA,利用對(duì)應(yīng)邊成比例可表示出CM;
(2)分三種情況討論,即0<t≤8, 8<t≤10,t≥10.每種情況均用△CEM∽△CBA表示EM和CM長(zhǎng),從而表示FM長(zhǎng),再由△FEM∽△BCA或△EFM∽△BCA,得出 或,即可求出t值.
解:(1),;
理由:∵AE=t,AC=8,
∴CE=8-t,
∵EF是圓的直徑,
∴∠EMF=90°,
∴∠EMC=∠BAC=90°,
∵∠MCE=∠ACB,
∴△MCE∽△ACB,
∴ ,
在Rt△ABC中,AC=8,AB=6, ∴BC=10,
∴,
∴CM= ;
(2)當(dāng)時(shí),如圖,由題意得,
,
若,此時(shí),則,即(舍去),
若,此時(shí),則,即;
解得
當(dāng)時(shí),如圖,由題意得:,
,
此時(shí),所以不成立;
若,,則,即;
解得(成立);
當(dāng)時(shí),如圖,由題意得:,
,
若,此時(shí),則,即;
解得(成立);
若,此時(shí),則,即;
解得(舍去);
綜上所述,當(dāng),或時(shí),以點(diǎn)、、為頂點(diǎn)的三角形與相似.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的函數(shù)y=ax2+(2a+1)x+a-1與坐標(biāo)軸有兩個(gè)交點(diǎn),則a的取值有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線:交軸于點(diǎn),,交軸于點(diǎn).
(1)直接寫(xiě)出當(dāng)時(shí),的取值范圍是____________;
(2)點(diǎn)在拋物線上,求的面積;
(3)如圖2,將拋物線平移,使其頂點(diǎn)為原點(diǎn),得到拋物線,直線與拋物線交于、兩點(diǎn),點(diǎn)是線段上一動(dòng)點(diǎn)(不與、重合),試探究拋物線上是否存在點(diǎn),點(diǎn)關(guān)于點(diǎn)的中心對(duì)稱(chēng)點(diǎn)也在拋物線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們定義兩個(gè)不相交的函數(shù)圖象在豎直方向上的最短距離為這兩個(gè)函數(shù)的“和諧值”.
(1)求拋物線y=x2﹣2x+2與x軸的“和諧值”;
(2)求拋物線y=x2﹣2x+2與直線y=x﹣1的“和諧值”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點(diǎn)C,以點(diǎn)O為圓心,OC長(zhǎng)為半徑作,交射線OB于點(diǎn)D,連接CD;
(2)分別以點(diǎn)C,D為圓心,CD長(zhǎng)為半徑作弧,交于點(diǎn)M,N;
(3)連接OM,MN.
根據(jù)以上作圖過(guò)程及所作圖形,下列結(jié)論中錯(cuò)誤的是( )
A. ∠COM=∠CODB. 若OM=MN,則∠AOB=20°
C. MN∥CDD. MN=3CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“活力新衢州,美麗大花園”.衢州市某中學(xué)九年級(jí)開(kāi)展了“我最喜愛(ài)的旅游景區(qū)”的抽樣調(diào)查(每人只能選一項(xiàng)):A﹣“世界文化新遺產(chǎn)”開(kāi)化根博園;B﹣“首個(gè)自然遺產(chǎn)”江郎山;C﹣“烏溪江上的明珠”九龍湖;D﹣“世界最大的象形石動(dòng)物園”三衢石林;E﹣“世界第九大奇跡”龍游石窟.根據(jù)收集的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計(jì)圖,其中B對(duì)應(yīng)的圓心角為90°.請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:
(1)此次抽取的九年級(jí)學(xué)生共 人,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)扇形統(tǒng)計(jì)圖中m= ,表示E的扇形的圓心角是 度;
(3)九年級(jí)準(zhǔn)備在最喜愛(ài)A景區(qū)的4名優(yōu)秀學(xué)生中任意選擇兩人去實(shí)地考察,這4名學(xué)生中有2名男生和2名女生,用樹(shù)狀圖或列表法求選出的兩名學(xué)生都是男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷(xiāo)售一批襯衫,平均每天可售出20件,每件盈利40元,經(jīng)過(guò)調(diào)查發(fā)現(xiàn),銷(xiāo)售單價(jià)每降低5元,每天可多售出10件,下列說(shuō)法錯(cuò)誤的是( )
A.銷(xiāo)售單價(jià)降低15元時(shí),每天獲得利潤(rùn)最大
B.每天的最大利潤(rùn)為1250元
C.若銷(xiāo)售單價(jià)降低10元,每天的利潤(rùn)為1200元
D.若每天的利潤(rùn)為1050元,則銷(xiāo)售單價(jià)一定降低了5元
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩工程隊(duì)共同承建某高速路隧道工程,隧道總長(zhǎng)2000米,甲、乙分別從隧道兩端向中間施工,計(jì)劃每天各施工6米.因地質(zhì)情況不同,兩支隊(duì)伍每合格完成1米隧道施工所需成本不一樣.甲每合格完成1米,隧道施工成本為6萬(wàn)元;乙每合格完成1米,隧道施工成本為8萬(wàn)元.
(1)若工程結(jié)算時(shí)乙總施工成本不低于甲總施工成本的,求甲最多施工多少米?
(2)實(shí)際施工開(kāi)始后因地質(zhì)情況比預(yù)估更復(fù)雜,甲乙兩隊(duì)每日完成量和成本都發(fā)生變化.甲每合格完成1米隧道施工成本增加m萬(wàn)元時(shí),則每天可多挖m米,乙因特殊地質(zhì),在施工成本不變的情況下,比計(jì)劃每天少挖m米,若最終每天實(shí)際總成本比計(jì)劃多(11m-8)萬(wàn)元,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,甲、乙兩人在玩轉(zhuǎn)盤(pán)游戲時(shí),分別把轉(zhuǎn)盤(pán)A,B分成3等份和1等份,并在每一份內(nèi)標(biāo)上數(shù)字.游戲規(guī)則:同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán),當(dāng)轉(zhuǎn)盤(pán)停止后,指針?biāo)趨^(qū)域的數(shù)字之積為奇數(shù)時(shí),甲獲勝;當(dāng)數(shù)字之積為偶數(shù)時(shí),乙獲勝.如果指針恰好在分割線上時(shí),則需重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán).
(1)利用畫(huà)樹(shù)狀圖或列表的方法,求甲獲勝的概率.
(2)這個(gè)游戲規(guī)則對(duì)甲、乙雙方公平嗎?若公平,請(qǐng)說(shuō)明理由;若不公平,請(qǐng)你在轉(zhuǎn)盤(pán)A上只修改一個(gè)數(shù)字使游戲公平(不需要說(shuō)明理由).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com