【題目】已知點O為直線AB上一點,將直角三角板MON的直角頂點放在點O處,并在∠MON內(nèi)部作射線OC.
(1)如圖1,三角板的一邊ON與射線OB重合,且∠AOC=150°.若以點O為觀察中心,射線OM表示正北方向,求射線OC表示的方向;
(2)如圖2,將三角板放置到如圖位置,使OC恰好平分∠MOB,且∠BON=2∠NOC,求∠AOM的度數(shù);
(3)若仍將三角板按照如圖2的方式放置,僅滿足OC平分∠MOB,試猜想∠AOM與∠NOC之間的數(shù)量關(guān)系,并說明理由.
【答案】(1)射線OC表示的方向為北偏東60°;(2)45°;(3)∠AOM=2∠NOC.
【解析】
(1)根據(jù)∠MOC=∠AOC﹣∠AOM代入數(shù)據(jù)計算,即得出射線OC表示的方向;
(2)根據(jù)角的倍分關(guān)系以及角平分線的定義即可求解;
(3)令∠NOC為β,∠AOM為γ,∠MOC=90°﹣β,根據(jù)∠AOM+∠MOC+∠BOC=180°即可得到∠AOM與∠NOC滿足的數(shù)量關(guān)系.
(1)∵∠MOC=∠AOC﹣∠AOM=150°﹣90°=60°,
∴射線OC表示的方向為北偏東60°;
(2)∵∠BON=2∠NOC,OC平分∠MOB,
∴∠MOC=∠BOC=3∠NOC,
∵∠MOC+∠NOC=∠MON=90°,
∴3∠NOC+∠NOC=90°,
∴4∠NOC=90°,
∴∠BON=2∠NOC=45°,
∴∠AOM=180°﹣∠MON﹣∠BON=180°﹣90°﹣45°=45°;
(3)∠AOM=2∠NOC.
令∠NOC為β,∠AOM為γ,∠MOC=90°﹣β,
∵∠AOM+∠MOC+∠BOC=180°,
∴γ+90°﹣β+90°﹣β=180°,
∴γ﹣2β=0,即γ=2β,
∴∠AOM=2∠NOC.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,屬于假命題的是( )
A.有一個銳角相等的兩個直角三角形一定相似
B.對角線相等的菱形是正方形
C.拋物線Y=X2—20x+17的開口向上
D.在一次拋擲圖釘?shù)脑囼炛,若釘尖朝上的頻率為3/5,則釘尖朝上的概率也為3/5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c為△ABC的三條邊的長,且滿足b2+2ab=c2+2ac.
(1)試判斷△ABC的形狀,并說明理由;
(2)若a=6,b=5,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知CO1是△ABC的中線,過點O1作O1E1∥AC交BC于點E1 , 連接AE1交CO1于點O2;過點O2作O2E2∥AC交BC于點E2 , 連接AE2交CO1于點O3;過點O3作O3E3∥AC交BC于點E3 , …,如此繼續(xù),可以依次得到點O4 , O5 , …,On和點E4 , E5 , …,En . 則OnEn=AC.(用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知a+b=﹣,求代數(shù)式(a﹣1)2+b(2a+b)+2a的值.
(2)已知a,b,c是三角形的三邊,且a2+b2+c2﹣ab﹣bc﹣ac=0.求證:此三角形是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形ABCD中,AB=2,∠A=120°,點P、Q、K分別為線段BC,CD,BD上的任意一點,則PK+QK的最小值為( )
A. 1 B. 3 C. D. +1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知AB∥CD,點E、F分別是AB、CD上的點,點P是兩平行線之間的一點,設(shè)∠AEP=α,∠PFC=β,在圖①中,過點E作射線EH交CD于點N,作射線FI,延長PF到G,使得PE、FG分別平分∠AEH、∠DFI,得到圖②.
(1)在圖①中,當(dāng)α=20°,β=50°時,求∠EPF的度數(shù);
(2)在(1)的條件下,求圖②中∠END與∠CFI的度數(shù);
(3)在圖②中,當(dāng)FI∥EH時,請求出α與β的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索研究:已知:△ABC和△CDE都是等邊三角形.
(1)如圖1,若點A、C、E在一條直線上時,我們可以得到結(jié)論:線段AD與BE的數(shù)量關(guān)系為: ,
線段AD與BE所成的銳角度數(shù)為°;
(2)如圖2,當(dāng)點A、C、E不在一條直線上時,請證明(1)中的結(jié)論仍然成立;
靈活運用:
如圖3,某廣場是一個四邊形區(qū)域ABCD,現(xiàn)測得:AB=60m,BC=80m,且∠ABC=30°,∠DAC=∠DCA=60°,試求水池兩旁B、D兩點之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖所示,D為BC上一點,且AB=AC=BD,則圖中∠1與∠2的關(guān)系是( )
A.∠1=2∠2
B.∠1+∠2=180°
C.∠1+3∠2=180°
D.3∠1﹣∠2=180°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com