如圖,直線y=
3
3
x+
3
與x軸、y軸分別相交于A,B兩點(diǎn),圓心P的坐標(biāo)為(1,0),⊙P與y軸相切于點(diǎn)O.若將⊙P沿x軸向左移動(dòng),當(dāng)⊙P與該直線相交時(shí),橫坐標(biāo)為整數(shù)的點(diǎn)P坐標(biāo)為_(kāi)_____.
令y=0,則
3
3
x+
3
=0
,
解得x=-3,
則A點(diǎn)坐標(biāo)為(-3,0);
令x=0,則y=
3
,
則B點(diǎn)坐標(biāo)為(0,
3
),
∴tan∠BAO=
3
3
,
∴∠BAO=30°,
作⊙P′與⊙P″切AB于D、E,
連接P′D、P″E,則P′D⊥AB、P″E⊥AB,
則在Rt△ADP′中,AP′=2×DP′=2,
同理可得,AP″=2,
則P′橫坐標(biāo)為-3+2=-1,P″橫坐標(biāo)為-1-4=-5,
∴P橫坐標(biāo)x的取值范圍為:-5<x<-1,
∴橫坐標(biāo)為整數(shù)的點(diǎn)P坐標(biāo)為(-2,0)、(-3,0)、(-4,0).
故答案為(-2,0)、(-3,0)、(-4,0).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

一個(gè)一次函數(shù)的圖象經(jīng)過(guò)(4,5),(5,2)兩點(diǎn),則這個(gè)一次函數(shù)解析式為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A在y軸正半軸上,點(diǎn)B的橫、縱坐標(biāo)分別是一元二次方程x2+5x-24=0的兩個(gè)實(shí)數(shù)根,點(diǎn)D是AB的中點(diǎn).
(1)求點(diǎn)B坐標(biāo);
(2)求直線OD的函數(shù)表達(dá)式;
(3)點(diǎn)P是直線OD上的一個(gè)動(dòng)點(diǎn),當(dāng)以P、A、D三點(diǎn)為頂點(diǎn)的三角形是等腰三角形時(shí),請(qǐng)直接寫(xiě)出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在平面直角坐標(biāo)系中,點(diǎn)A1,A2,A3,…和B1,B2,B3,…分別在直線y=kx+b和x軸上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2
7
2
3
2
),那么點(diǎn)A2013的縱坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

我國(guó)西南五省發(fā)生旱情后,我市中小學(xué)學(xué)生得知遵義市某山區(qū)學(xué)校學(xué)生缺少飲用水,全市中小學(xué)生決定捐出自己的零花錢購(gòu)買300噸礦泉水送往災(zāi)區(qū)學(xué)校.我市“為民”貨車出租公司聽(tīng)說(shuō)此事后,決定免費(fèi)將這批礦泉水送往災(zāi)區(qū)學(xué)校,已知每輛貨車配備2名司機(jī),整個(gè)車隊(duì)配備1名領(lǐng)隊(duì),司機(jī)及領(lǐng)隊(duì)往返途中的生活費(fèi)y(單位:元)與貨車臺(tái)數(shù)x(單位:臺(tái))的關(guān)系如圖①所示,為此“為民”貨車出租公司花費(fèi)8200元.又知“為民”出租車公司有小、中、大三種型號(hào)貨車供出租,本次派出的貨車每種型號(hào)貨車不少于3臺(tái),各種型號(hào)貨車載重量和預(yù)計(jì)運(yùn)費(fèi)如下表所示.
載重(噸/臺(tái))121520
運(yùn)費(fèi)(元/輛)100012001500
(1)求出y與x之間的函數(shù)關(guān)系式和公司派出的出租車臺(tái)數(shù);
(2)記總運(yùn)費(fèi)為W(元),求W與小型貨車臺(tái)數(shù)p之間的函數(shù)關(guān)系式;(暫不寫(xiě)自變量取值范圍)
(3)求出小、中、大型貨車各多少臺(tái)時(shí)總運(yùn)費(fèi)最小以及最小運(yùn)費(fèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知直線y=-x+2與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,另已知直線y=kx+b(k≠0)經(jīng)過(guò)點(diǎn)C(1,0),且把△AOB分成兩部分.
(1)若△AOB被分成的兩部分面積相等,求k和b的值;
(2)若△AOB被分成的兩部分面積比為1:5,求k和b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,某商場(chǎng)有一雙向運(yùn)行的自動(dòng)扶梯,扶梯上行和下行的速度保持不變且相同,甲、乙兩人同時(shí)站上了此扶梯的上行和下行端,甲站上上行扶梯的同時(shí)又以0.8m/s的速度往上跑,乙站上下行扶梯后則站立不動(dòng)隨扶梯下行,兩人在途中相遇,甲到達(dá)扶梯頂端后立即乘坐下行扶梯,同時(shí)以0.8m/s的速度往下跑,而乙到達(dá)底端后則在原地等候甲.圖2中線段OB、AB分別表示甲、乙兩人在乘坐扶梯過(guò)程中,離扶梯底端的路程y(m)與所用時(shí)間x(s)之間的部分函數(shù)關(guān)系,結(jié)合圖象解答下列問(wèn)題:
(1)點(diǎn)B的坐標(biāo)是______;
(2)求AB所在直線的函數(shù)關(guān)系式;
(3)乙到達(dá)扶梯底端后,還需等待多長(zhǎng)時(shí)間,甲才到達(dá)扶梯底端?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某企業(yè)有甲、乙兩個(gè)長(zhǎng)方體的蓄水池,將甲池中的水以每小時(shí)6立方米的速度注入乙池,甲、乙兩個(gè)蓄水池中水的深度y(米)與注水時(shí)間x(時(shí))之間的函數(shù)圖象如圖所示,結(jié)合圖象回答下列問(wèn)題:
(1)分別求出甲、乙兩個(gè)蓄水池中水的深度y與注水時(shí)間x之間的函數(shù)關(guān)系式;
(2)求注水多長(zhǎng)時(shí)間甲、乙兩個(gè)蓄水池水的深度相同;
(3)求注水多長(zhǎng)時(shí)間甲、乙兩個(gè)蓄水池的蓄水量相同.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某市選自來(lái)水公司為鼓勵(lì)居民節(jié)約用水,采取按月用水量收費(fèi)辦法,若某戶居民應(yīng)交消費(fèi)y(元)與用水量x(噸)的函數(shù)關(guān)系如圖所示.
(1)分別寫(xiě)出當(dāng)0≤x≤15和x≥15時(shí),y與x的函數(shù)關(guān)系式;
(2)若某用戶該月用水21噸,則應(yīng)交水費(fèi)多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案