【題目】如果一個(gè)正六邊形的每個(gè)外角都是30°,那么這個(gè)多邊形的內(nèi)角和為

【答案】1800°
【解析】解:∵一個(gè)多邊形的每個(gè)外角都是30°,
∴n=360°÷30°=12,
則內(nèi)角和為:(12﹣2)180°=1800°.
所以答案是:1800°.
【考點(diǎn)精析】關(guān)于本題考查的多邊形內(nèi)角與外角,需要了解多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n-2)180°.多邊形的外角和定理:任意多邊形的外角和等于360°才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下列材料,然后解后面的問題.

材料:一個(gè)三位自然數(shù) (百位數(shù)字為a,十位數(shù)字為b,個(gè)位數(shù)字為c),若滿足a+c=b,則稱這個(gè)三位數(shù)為歡喜數(shù),并規(guī)定F=ac.如374,因?yàn)樗陌傥簧蠑?shù)字3與個(gè)位數(shù)字4之和等于十位上的數(shù)字7,所以374歡喜數(shù),F374=3×4=12

1)對(duì)于歡喜數(shù),若滿足b能被9整除,求證:歡喜數(shù)能被99整除;

2)已知有兩個(gè)十位數(shù)字相同的歡喜數(shù)”mnmn),若Fm﹣Fn=3,求m﹣n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是( )
A.23表示2×3的積
B.任何一個(gè)有理數(shù)的偶次冪是正數(shù)
C.-32 與 (-3)2互為相反數(shù)
D.一個(gè)數(shù)的平方是 ,這個(gè)數(shù)一定是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種商品每件的標(biāo)價(jià)是270元,按標(biāo)價(jià)的八折銷售時(shí),仍可獲利20%,則這種商品每件的進(jìn)價(jià)為(

A. 180 B. 200 C. 225 D. 259.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)你寫出一個(gè)主視圖與左視圖相同的立體圖形是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是某同學(xué)對(duì)多項(xiàng)式(x24x+2)(x24x+6+4進(jìn)行因式分解的過程.

解:設(shè)x24x=y

原式=y+2)(y+6+4 (第一步)

=y2+8y+16 (第二步)

=y+42(第三步)

=x24x+42(第四步)

回答下列問題:

1)該同學(xué)第二步到第三步運(yùn)用了因式分解的_______

A.提取公因式

B.平方差公式

C.兩數(shù)和的完全平方公式

D.兩數(shù)差的完全平方公式

2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填徹底不徹底)若不徹底,請(qǐng)直接寫出因式分解的最后結(jié)果_________

3)請(qǐng)你模仿以上方法嘗試對(duì)多項(xiàng)式(x22x)(x22x+2+1進(jìn)行因式分解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:
(1)(+4)×(-5);
(2)(-0.125)×(-8);
(3)(-2)×(-);
(4)0×(-13.52);
(5)(-3.25)×(+
(6)-4.8×(-1.2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市自來水公司為鼓勵(lì)居民節(jié)約用水,采取按月用水量分段收費(fèi)的辦法,若某戶居民應(yīng)交水費(fèi)y(元)與用水量x(噸)的函數(shù)關(guān)系如圖所示.

(1)分別寫出當(dāng)0x15和x15時(shí),y與x的函數(shù)關(guān)系式;

(2)若某用戶該月應(yīng)交水費(fèi)42元,則該月用水多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某呼吸機(jī)制造商2020年一月份生產(chǎn)呼吸機(jī)1000臺(tái),2020年三月份生產(chǎn)呼吸機(jī)4000臺(tái),設(shè)二、三月份每月的平均增長率為x,根據(jù)題意,可列方程為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案