【題目】已知汽車燃油箱中的y(單位:升)與該汽車行駛里程數(shù)x(單位:千米)是一次函數(shù)關(guān)系.賈老師從某汽車租賃公司租借了一款小汽車,擬去距離出發(fā)地600公里的目的地旅游(出發(fā)之前,賈老師往該汽車燃油箱內(nèi)注滿了油).行駛了200千米之后,汽車燃油箱中的剩余油量為40升;又行駛了100千米,汽車燃油箱中的剩余油量為30升.

1)求y關(guān)于x的函數(shù)關(guān)系式(不要求寫函數(shù)的定義域)

2)當(dāng)汽車燃油箱中的剩余油量為8升的時候,汽車儀表盤上的燃油指示燈就會亮起來.在燃油指示燈亮起來之前,賈老師駕駛該車可否抵達(dá)目的地?請通過計算說明.

【答案】1;(2)不能,理由見解析.

【解析】

1)利用待定系數(shù)法解答即可;

2)把代入(1)的結(jié)論解答即可.

1)設(shè)關(guān)于的函數(shù)關(guān)系式為

由題意,得

解得,

關(guān)于的函數(shù)關(guān)系式為;

2)當(dāng)時,,

解得

,

在燃油指示燈亮起來之前,賈老師駕駛該車不能抵達(dá)目的地.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象交軸于兩點,交軸于點,點的坐標(biāo)為,頂點的坐標(biāo)為

(1)求二次函數(shù)的解析式和直線的解析式;

(2)點是直線上的一個動點,過點軸的垂線,交拋物線于點,當(dāng)點在第一象限時,求線段長度的最大值;

(3)在拋物線上是否存在異于的點,使邊上的高為,若存在求出點的坐標(biāo);若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解高郵市“新冠肺炎”疫情防控期間九年級學(xué)生線上學(xué)習(xí)情況,通過問卷網(wǎng)就“你對自己線上學(xué)習(xí)的效果評價”進(jìn)行了問卷調(diào)查,從中隨機(jī)抽取了部分樣卷進(jìn)行統(tǒng)計,繪制了如下的統(tǒng)計圖

根據(jù)統(tǒng)計圖信息,解答下列問題:

1)本次調(diào)查的樣本容量為    ;

2)請補(bǔ)全條形統(tǒng)計圖;

3)扇形統(tǒng)計圖中“較好”對應(yīng)的扇形圓心角的度數(shù)為    

4)若全市九年級線上學(xué)習(xí)人數(shù)有人,請估計對線上學(xué)習(xí)評價“非常好”的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c,經(jīng)過矩形OABCA(3,0),C(02),連結(jié)OBD為橫軸上一個動點,連結(jié)CD,以CD為直徑作⊙M,與線段OB有一個異于點O的公共點E,連結(jié)DE.過DDFDE,交⊙MF

(1)求拋物線的解析式;

(2)tanFDC的值;

(3)①當(dāng)點D在移動過程中恰使F點落在拋物線上,求此時點D的坐標(biāo);

②連結(jié)BF,求點D在線段OA上移動時,BF掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線A(-10)、B30),直線AD交拋物線于點D,點D的橫坐標(biāo)為2,點Pmn)是線段AD上的動點.

1)求拋物線和直線AD的解析式;

2)過點P的直線垂直于x軸,交拋物線于點H,

①求線段PH的長度lm的關(guān)系式;

②當(dāng)PH2時,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平行四邊形ABCD中,AB10BC15,tanA,點P是邊AD上一點,聯(lián)結(jié)PB,將線段PB繞著點P逆時針旋轉(zhuǎn)90°得到線段PQ,如果點Q恰好落在平行四邊形ABCD的邊上,那么AP的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數(shù));當(dāng)﹣1<x<3時,y0,其中正確的是(  

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,EBC的中點,FCD上一點,AEEF.有下列結(jié)論:BAE=∠EAF;射線FE是∠AFC的角平分線;CFCD;AFAB+CF.其中正確結(jié)論的個數(shù)為( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2020年突如其來的肺炎疫情,給我們的生活和學(xué)習(xí)帶來了諸多不便.圖121日至25日全國“新冠肺炎”疫情新增數(shù)據(jù)統(tǒng)計圖,為了控制疫情蔓延擴(kuò)散,國家全面落實疫情防控工作,舉國上下眾志成城,圖235日至39日全國“新冠肺炎”疫情新增數(shù)據(jù)統(tǒng)計圖,請根據(jù)統(tǒng)計圖解答以下問題:

1)寫出23日全國新增確診病例數(shù),并計算35日至39日全國新增確診病例數(shù)的平均數(shù).

2)對比兩幅統(tǒng)計圖中的數(shù)據(jù),選擇一個角度分析評價此次疫情控制情況.

查看答案和解析>>

同步練習(xí)冊答案